Advertisement

Fast and Accurate Computation of Role Similarity via Vertex Centrality

  • Longjie LiEmail author
  • Lvjian Qian
  • Victor E. Lee
  • Mingwei Leng
  • Mei Chen
  • Xiaoyun Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9098)

Abstract

There is growing evidence that vertex similarity based on structural context is the basis of many link mining applications in complex networks. As a special case of vertex similarity, role similarity which measures the similarity between two vertices according to their roles in a network can facilitate the search for peer vertices. In RoleSim, graph automorphism is encapsulated into the role similarity measure. As a real-valued role similarity, RoleSim shows good interpretative power in experiments. However, RoleSim is not sufficient for some applications since it is very time-consuming and may assign unreasonable similarities in some cases. In this paper, we present CentSim, a novel role similarity metric which obeys all axiomatic properties for role similarity. CentSim can quickly calculate the role similarity between any two vertices by directly comparing their corresponding centralities. The experimental results demonstrate that CentSim achieves best performance in terms of efficiency and effectiveness compared with the state-of-the-art.

Keywords

Complex network Vertex similarity Role similarity Vertex centrality Similarity metric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, C.J., Wasserman, S., Faust, K.: Building stochastic blockmodels. Social Networks 14(1), 137–161 (1992)CrossRefGoogle Scholar
  2. 2.
    Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J., Sun, S., Ling, L., Zhang, N., Li, G., Chen, R.: Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Research 31, 2443–2450 (2003)CrossRefGoogle Scholar
  3. 3.
    Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using k-shell decomposition. PNAS 104(27), 11150–11154 (2007)CrossRefGoogle Scholar
  4. 4.
    Freeman, L.C.: Centrality in social networks: Conceptual clarification. Social Networks 1(3), 215–239 (1979)CrossRefGoogle Scholar
  5. 5.
    Holme, P., Huss, M.: Role-similarity based functional prediction in networked systems: application to the yeast proteome. Journal of the Royal Society Interface 2(4), 327–333 (2005)CrossRefGoogle Scholar
  6. 6.
    Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: SIGKDD 2002, pp. 538–543. ACM (2002)Google Scholar
  7. 7.
    Jin, R., Lee, V.E., Hong, H.: Axiomatic ranking of network role similarity. In: SIGKDD 2011, pp. 922–930. ACM (2011)Google Scholar
  8. 8.
    Jin, R., Lee, V.E., Li, L.: Scalable and axiomatic ranking of network role similarity. TKDD 8(1), 3 (2014)CrossRefGoogle Scholar
  9. 9.
    Klimt, B., Yang, Y.: Introducing the enron corpus. In: CEAS 2004Google Scholar
  10. 10.
    Lü, L., Zhou, T.: Link prediction in complex networks: A survey. Physica A 390(6), 11501170 (2011)CrossRefGoogle Scholar
  11. 11.
    Lin, Z., King, I., Lyu, M.R.: Pagesim: A novel link-based similarity measure for the world wide web. In: WI 2006, pp. 687–693. IEEE (2006)Google Scholar
  12. 12.
    Lin, Z., Lyu, M.R., King, I.: Matchsim: a novel neighbor-based similarity measure with maximum neighborhood matching. In: CIKM 2009, pp. 1613–1616. ACM (2009)Google Scholar
  13. 13.
    Luczkovich, J., Borgatti, S.P., Johnson, J.C., Everett, M.G.: Defining and measuring trophic role similarity in food webs using regular equivalence. Journal of Theoretical Biology 220(3), 303–321 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ma, H., King, I., Lyu, M.R.: Mining web graphs for recommendations. TKDE 24(6), 1051–1064 (2012)Google Scholar
  15. 15.
    Mahadevan, P., Krioukov, D., Fomenkov, M., Dimitropoulos, X., Claffy, K., Vahdat, A.: The internet as-level topology: Three data sources and one definitive metric. ACM SIGCOMM Computer Communication Review 36(1), 17–26 (2006)Google Scholar
  16. 16.
    Ná, M.B., Satorras, R.P., Guilera, A.D., Arenas, A.: Models of social networks based on social distance attachment. Physical Review E 70, 056122 (2004)CrossRefGoogle Scholar
  17. 17.
    Nowicki, K., Snijders, T.A.B.: Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association 96(455), 1077–1087 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Oliveira, M.: Gama, J.A.: An overview of social network analysis. Wiley Interdisciplinary Reviews. Data Mining and Knowledge Discovery 2(2), 99–115 (2012)CrossRefGoogle Scholar
  19. 19.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. In: WWW 1998, pp. 161–172. ACM (1998)Google Scholar
  20. 20.
    Rossi, R.A., Ahmed, N.K.: Role discovery in networks. arXiv preprint arXiv:1405.7134 (2014)
  21. 21.
    Rossi, R.A., Gallagher, B., Neville, J., Henderson, K.: Modeling dynamic behavior in large evolving graphs. In: WSDM 2013, pp. 667–676. ACM (2013)Google Scholar
  22. 22.
    Ruan, Y., Parthasarathy, S.: Simultaneous detection of communities and roles from large networks. In: COSN 2014, pp. 203–214. ACM (2014)Google Scholar
  23. 23.
    Tiakas, E., Papadopoulos, A., Nanopoulos, A., Manolopoulos, Y., Stojanovic, D., Djordjevic-Kajan, S.: Searching for similar trajectories in spatial networks. Journal of Systems and Software 82(5), 772–788 (2009)CrossRefGoogle Scholar
  24. 24.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press (1994)Google Scholar
  25. 25.
    Yu, W., Lin, X., Zhang, W., Chang, L., Pei, J.: More is simpler: Effectively and efficiently assessing node-pair similarities based on hyperlinks. PVLDB 7(1), 13–24 (2013)Google Scholar
  26. 26.
    Zhang, M., He, Z., Hu, H., Wang, W.: E-rank: A structural-based similarity measure in social networks. In: WI-IAT 2012, pp. 415–422. IEEE (2012)Google Scholar
  27. 27.
    Zhuge, H., Zhang, J.: Topological centrality and its e-science applications. Journal of the American Society for Information Science and Technology 61(9), 1824–1841 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Longjie Li
    • 1
    Email author
  • Lvjian Qian
    • 1
  • Victor E. Lee
    • 2
  • Mingwei Leng
    • 3
  • Mei Chen
    • 1
    • 4
  • Xiaoyun Chen
    • 1
  1. 1.School of Information Science and EngineeringLanzhou UniversityLanzhouChina
  2. 2.Department of Mathematics and Computer ScienceJohn Carroll UniversityUniversity HeightsUSA
  3. 3.School of Mathematics and Computer ScienceShangrao Normal UniversityShangraoChina
  4. 4.School of Electronic and Information EngineeringLanhou Jiaotong UniversityLanzhouChina

Personalised recommendations