Skip to main content

Senescence-Associated Programmed Cell Death

  • Chapter
Plant Programmed Cell Death

Abstract

Senescence is key component of plant development. It enables remobilisation of nutrients from organs that are no longer needed or have been compromised and ends with programmed cell death (PCD) of all the cells in the organ. Cytological features of senescence-associated PCD are distinct, though shared in part with other forms of plant PCD triggered by abiotic stress or pathogen attack. These cytological features define a form of PCD termed vacuolar cell death and share some characteristics of autophagy. Key features are enlargement of the vacuole through fusion of vesicles carrying cytoplasmic cargo and vacuolar rupture releasing lytic enzymes into the cytoplasm. Biochemical processes are common to many forms of plant PCD including the activation of proteases, lipases, nucleases and transporters. Vacuolar processing enzymes (VPEs) that have caspase activity have emerged as important players in several forms of PCD. However, less is known about upstream signals and regulatory mechanisms that control the initiation and progression of senescence and trigger the onset of PCD. Here, the signals and mechanisms triggering senescence-associated PCD are reviewed, and their conservation across different tissues is assessed. Key questions that remain to be answered in future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guiboileau A, Sormani R, Meyer C, Masclaux-Daubresse C (2010) Senescence and death of plant organs: nutrient recycling and developmental regulation. C R Biol 333:382–391

    Article  CAS  PubMed  Google Scholar 

  2. Woo HR, Kim HJ, Nam HG, Lim PO (2013) Plant leaf senescence and death – regulation by multiple layers of control and implications for aging in general. J Cell Sci 126:4823–4833

    CAS  PubMed  Google Scholar 

  3. Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197:696–711

    Article  PubMed  Google Scholar 

  4. Bedinger P (1992) The remarkable biology of pollen. Plant Cell 4:879–887

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lombardi L, Casani S, Ceccarelli N, Galleschi L, Picciarelli P, Lorenzi R (2007) Programmed cell death of the nucellus during Sechium edule Sw. seed development is associated with activation of caspase-like proteases. J Exp Bot 58:2949–2958

    Article  CAS  PubMed  Google Scholar 

  6. Lombardi L, Ceccarelli N, Picciarelli P, Lorenzi R (2007) Caspase-like proteases involvement in programmed cell death of Phaseolus coccineus suspensor. Plant Sci 172:573–578

    Article  CAS  Google Scholar 

  7. Gunawardena AHLAN (2008) Programmed cell death and tissue remodelling in plants. J Exp Bot 59:445–451

    Article  CAS  PubMed  Google Scholar 

  8. van Doorn WG, Woltering EJ (2004) Senescence and programmed cell death: substance or semantics? J Exp Bot 55:2147–2153

    Article  PubMed  Google Scholar 

  9. Fischer AM (2012) The complex regulation of senescence. Crit Rev Plant Sci 31:124–147

    Article  CAS  Google Scholar 

  10. Thomas H, Ougham HJ, Wagstaff C, Stead AD (2003) Defining senescence and death. J Exp Bot 54:1127–1132

    Article  CAS  PubMed  Google Scholar 

  11. Reape TJ, McCabe PF (2008) Tansley review: Apoptotic-like programmed cell death in plants. New Phytol 180:13–26

    Article  CAS  PubMed  Google Scholar 

  12. Wagstaff C, Malcolm P, Rafiq A, Leverentz M, Griffiths G, Thomas B, Stead A, Rogers H (2003) Programmed cell death (PCD) processes begin extremely early in Alstroemeria petal senescence. New Phytol 160:49–59

    Article  CAS  PubMed  Google Scholar 

  13. Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  CAS  PubMed  Google Scholar 

  14. Rogers HJ (2006) Programmed cell death in floral organs: how and why do flowers die? Ann Bot (Lond) 97:309–315

    Article  CAS  Google Scholar 

  15. van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, Mur LAJ, Petersen M, Smertenko A, Taliansky M, Van Breusegem F, Wolpert T, Woltering E, Zhivotovsky B, Bozhkov PV (2011) Morphological classification of plant cell deaths. Cell Death Differ 18:1241–1246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gepstein S, Glick BR (2013) Strategies to ameliorate abiotic-stress induced plant senescence. Plant Mol Biol 82:623–633

    Article  CAS  PubMed  Google Scholar 

  17. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  18. Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82:603–622

    Article  CAS  PubMed  Google Scholar 

  19. Mittal S (2007) Strengthening backward and forward linkages in horticulture: some successful initiatives. Agric Econ Res Rev 20:457–469

    Google Scholar 

  20. Rogers HJ (2013) From models to ornamentals: how is flower senescence regulated? Plant Mol Biol 82:563–574

    Article  CAS  PubMed  Google Scholar 

  21. Wagstaff C, Yang TJW, Stead AD, Buchanan-Wollaston V, Roberts JA (2009) A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. Plant J 57:690–705

    Article  CAS  PubMed  Google Scholar 

  22. Guo Y, Gan SS (2012) Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ 35:644–655

    Article  CAS  PubMed  Google Scholar 

  23. Sabelli PA (2012) Replicate and die for your own good: endoreduplication and cell death in the cereal endosperm. J Cereal Sci 56:9–20

    Article  CAS  Google Scholar 

  24. Schippers JHM, Jing HC, Hille J, Dijkwel PP (2007) Developmental and hormonal control of leaf-senescence. In: Plants SG (ed) In senescence processes. Blackwell, Oxford, pp 145–170

    Chapter  Google Scholar 

  25. Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim Y, Penfold CA, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richmond AE, Lang A (1957) Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 125:650–651

    Article  CAS  Google Scholar 

  27. Hwang I, Sheen J, Müller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380

    Article  CAS  PubMed  Google Scholar 

  28. Chang H, Jones ML, Banowetz GM, Clark DG (2003) Overproduction of cytokinins in petunia flowers transformed with PSAG12:IPT delays corolla senescence. Plant Physiol 132:2174–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  30. Pourtau N, Mares M, Purdy S, Quentin N, Ruel A, Wingler A (2004) Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence. Planta 219:765–772

    Article  CAS  PubMed  Google Scholar 

  31. Morris K, Mackerness SAH, Page T, John CF, Murphy AM, Carr JP, Buchanan-Wollaston V (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23:677–685

    Article  CAS  PubMed  Google Scholar 

  32. Abreu M, Munné-Bosch S (2009) Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. J Exp Bot 60:1261–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kinoshita T, Yamada K, Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I (1999) Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant J 19:43–53

    Article  CAS  PubMed  Google Scholar 

  34. Robatzek S, Somssich E (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J 28:123–133

    Article  CAS  PubMed  Google Scholar 

  35. Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    Article  CAS  PubMed  Google Scholar 

  36. van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge U, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Arrom L, Munné-Bosch S (2012) Hormonal changes during flower development in floral tissues of Lilium. Planta 236:343–354

    Article  CAS  PubMed  Google Scholar 

  38. Ueda J, Kato J (1980) Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66:246–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J 276:4666–4681

    Article  CAS  PubMed  Google Scholar 

  40. Tsuchiya T, Ohta H, Okawa K et al (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc Natl Acad Sci USA 96:15262–15367

    Article  Google Scholar 

  41. Shan X, Wang J, Chua L, Jiang D, Peng W, Xie D (2011) The role of Arabidopsis rubisco activase in jasmonate-induced leaf senescence. Plant Physiol 155:751–764

    Article  CAS  PubMed  Google Scholar 

  42. Hiderhofer K, Zentgraf U (2001) Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 213:469–473

    Article  CAS  Google Scholar 

  43. Oh SA, Park JH, Lee GI, Paek KH, Park S, Nam HG (1997) Identification of three genetic loci controlling leaf-senescence in Arabidopsis thaliana. Plant J 12:527–535

    Article  CAS  PubMed  Google Scholar 

  44. van Doorn WG, Woltering EJ (2008) Physiology and molecular biology of petal senescence. J Exp Bot 59:453–480

    Article  PubMed  CAS  Google Scholar 

  45. Jing HC, Sturre MJ, Hille J, Dijkwel PP (2002) Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf-senescence. Plant J 32:51–63

    Article  CAS  PubMed  Google Scholar 

  46. Jing H, Schippers J, Hille J, Dijkwel P (2005) Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J Exp Bot 56:2915–2923

    Article  CAS  PubMed  Google Scholar 

  47. Bieker S, Riester L, Stahl M, Franzaring J, Zentgraf U (2012) Senescence-specific alteration of hydrogen peroxide levels in Arabidopsis thaliana and oilseed rape spring variety Brassica napus L. cv. Mozart. J Integr Plant Biol 54:540–554

    Article  CAS  PubMed  Google Scholar 

  48. Rogers HJ (2012) Is there an important role for reactive oxygen species and redox regulation during floral senescence? Plant Cell Environ 35:217–233

    Article  CAS  PubMed  Google Scholar 

  49. Bar-Dror T, Dermastia M, Kladnik A, Tušek Žnidarič M, Pompe Novak M, Meir S, Burd S, Philosoph-Hadas S, Ori N, Sonego L, Dickman MB, Lers A (2011) Programmed cell death occurs asymmetrically during abscission in tomato. Plant Cell 23:4146–4163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. He X, Kermode AR (2010) Programmed cell death of the megagametophyte during post-germinative growth of white spruce (Picea glauca) seeds is regulated by reactive oxygen species and the ubiquitin-mediated proteolysis system. Plant Cell Physiol 51:1707–1720

    Article  CAS  PubMed  Google Scholar 

  51. Hu D, Ma G, Wang Q, Yao J, Wang Y, Pritchard HW, Wang X (2012) Spatial and temporal nature of reactive oxygen species production and programmed cell death in elm (Ulmus pumila L) seeds during controlled deterioration. Plant Cell Environ 35:2045–2059

    Article  CAS  PubMed  Google Scholar 

  52. Garmier M, Priault P, Vidal G, Driscoll S, Djebbar R, Boccara M, Mathieu C, Foyer CH, Paepe RD (2007) Light and oxygen are not required for harpin-induced cell death. J Biol Chem 282:37556–37566

    Article  CAS  PubMed  Google Scholar 

  53. Zentgraf U, Hemleben V (2008) Molecular cell biology: are reactive oxygen species regulators of leaf senescence? Prog Bot 69:117–138

    Article  CAS  Google Scholar 

  54. Hickman R, Hill C, Penfold CA, Breeze E, Bowden L, Moore JD, Zhang P, Jackson A, Cooke E, Bewicke-Copley F, Mead A, Beynon J, Wild DL, Denby KJ, Ott S, Buchanan-Wollaston V (2013) A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. Plant J 75:26–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor MI, Xue G-P, Mueller-Roebera B (2011) ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant 4:346–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Besseau S, Li J, Tapio Palva E (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63:2667–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ulker B, Shahid Mukhtar M, Somssich IE (2007) The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226:125–137

    Article  PubMed  CAS  Google Scholar 

  58. Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612

    Article  CAS  PubMed  Google Scholar 

  59. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  60. Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471

    Article  CAS  PubMed  Google Scholar 

  61. Faria JAQA, Reis PAB, Reis MTB, Rosado GL, Pinheiro GL, Mendes GC, Fontes EPB (2011) The NAC domain-containing protein, GmNAC6, is a downstream component of the ER stress- and osmotic stress-induced NRP-mediated cell-death signaling pathway. BMC Plant Biol 11:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mendes GC, Reis PAB, Calil IP, Carvalho HH, Aragão FJL, Fontes EPB (2013) GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress- and osmotic stress-induced cell death responses through a vacuolar processing enzyme. Proc Natl Acad Sci USA 110:19627–19632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Naqvi AR, Sarwat M, Hasan S, Choudhury NR (2012) Biogenesis, functions and fate of plant microRNAs. J Cell Physiol 227:3163–3168

    Article  CAS  PubMed  Google Scholar 

  64. Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 35:21–44

    Article  CAS  Google Scholar 

  65. Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  66. Rajagopal R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  CAS  Google Scholar 

  67. Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053–1057

    Article  CAS  PubMed  Google Scholar 

  68. Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U, Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6:230

    Article  CAS  Google Scholar 

  69. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kitanaka C, Kuchino Y (1999) Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ 6:508–515

    Article  CAS  PubMed  Google Scholar 

  71. Toyooka K, Okamoto T, Minamikawa T (2001) Cotyledon cells of Vigna mungo seedlings use at least two distinct autophagic machineries for degradation of starch granules and cellular components. J Cell Biol 154:973–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hara-Nishimura I, Hatsugai N (2011) The role of vacuole in plant cell death. Cell Death Differ 18:1298–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu Y, Bassham DC (2012) Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol 63:215–237

    Article  CAS  PubMed  Google Scholar 

  74. Shibuya K, Yamada T, Suzuki T, Shimizu K, Ichimura K (2009) InPSR26, a putative membrane protein, regulates programmed cell death during petal senescence in Japanese morning glory. Plant Physiol 149:816–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shibuya K, Niki T, Ichimura K (2013) Pollination induces autophagy in petunia petals via ethylene. J Exp Bot 64:1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schmid M, Simpson D, Gietl C (1999) Programmed cell death in castor bean endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes. Proc Natl Acad Sci USA 96:14159–14164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schmid M, Simpson DJ, Sarioglu H, Lottspeich F, Gietl C (2001) The ricinosomes of senescing plant tissue bud from the endoplasmic reticulum. Proc Natl Acad Sci USA 98:5353–5358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Greenwood JS, Helm M, Gietl C (2005) Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development. Proc Natl Acad Sci USA 102:2238–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Senatore A, Trobacher CP, Greenwood JS (2009) Ricinosomes predict programmed cell death leading to anther dehiscence in tomato. Plant Physiol 149:775–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. López-Fernández MP, Maldonado S (2013) Ricinosomes provide an early indicator of suspensor and endosperm cells destined to die during late seed development in quinoa (Chenopodium quinoa). Ann Bot (Lond) 112:1253–1262

    Article  CAS  Google Scholar 

  82. Otegui MS, Noh YS, Martínez DE, Vila Petroff MG, Staehelin LA, Amasino RM, Guiamet JJ (2005) Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J 41:831–844

    Article  CAS  PubMed  Google Scholar 

  83. Martínez DE, Costa ML, Gomez FM, Otegui MS, Guiamet JJ (2008) ‘Senescence-associated vacuoles’ are involved in the degradation of chloroplast proteins in tobacco leaves. Plant J 56:196–206

    Article  PubMed  CAS  Google Scholar 

  84. Carrión CA, Lorenza Costa M, Martínez DE, Mohr C, Humbeck K, Guiamet JJ (2013) In vivo inhibition of cysteine proteases provides evidence for the involvement of ‘senescence-associated vacuoles’ in chloroplast protein degradation during dark-induced senescence of tobacco leaves. J Exp Bot 64:4967–4980

    Article  PubMed  CAS  Google Scholar 

  85. Hayashi Y, Yamada K, Shimada T, Matsushima R, Nishizawa N, Nishimura M, Hara-Nishimura I (2001) A proteinase-storing body that prepares for cell death or stresses in the epidermal cells of Arabidopsis. Plant Cell Physiol 42:894–899

    Article  CAS  PubMed  Google Scholar 

  86. Ogasawara K, Yamada K, Christeller JT, Kondo M, Hatsugai N, Hara-Nishimura I, Nishimura M (2009) Constitutive and inducible ER bodies of Arabidopsis thaliana accumulate distinct β-glucosidases. Plant Cell Physiol 50:480–488

    Article  CAS  PubMed  Google Scholar 

  87. Honig A, Avin-Wittenberg T, Ufaz S, Galili G (2012) A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell 24:288–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Battelli R, Lombardi L, Picciarelli P, Lorenzi R, Frigerio L, Rogers HJ (2014) Expression and localisation of a senescence-associated KDEL-cysteine protease from Lilium longiflorum tepals. Plant Sci 214:38–46

    Article  CAS  PubMed  Google Scholar 

  89. Price A, Orellana D, Salleh F, Stevens R, Acock R, Buchanan-Wollaston V, Stead A, Rogers H (2008) A comparison of leaf and petal senescence in wallflower reveals common and distinct patterns of gene expression and physiology. Plant Physiol 147:1898–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Martinou J-C, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tait SWG, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    Article  CAS  PubMed  Google Scholar 

  92. Diamond M, McCabe PF (2011) Mitochondrial regulation of plant programmed cell death. Adv Plant Biol 1:439–465

    Google Scholar 

  93. Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E (2006) Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco bright-yellow 2 cells en route to heat shock-induced cell death. Plant Physiol 141:208–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Balk J, Leaver CJ, McCabe PF (1999) Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett 463:151–154

    Article  CAS  PubMed  Google Scholar 

  95. Xu Y, Hanson MR (2000) Programmed cell death during pollination-induced petal senescence in Petunia. Plant Physiol 122:1323–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Egorova VP, Zhao Q, Lo Y-S, Jane W-N, Cheng N, Hou S-Y, Dai H (2010) Programmed cell death of the mung bean cotyledon during seed germination. Bot Stud 51:439–449

    CAS  Google Scholar 

  97. Azad AK, Ishikawa T, Ishikawa T, Sawa Y, Shibata H (2008) Intracellular energy depletion triggers programmed cell death during petal senescence in tulip. J Exp Bot 59:2085–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Desai MK, Mishra RN, Verma D, Nair S, Sopory SK, Reddy MK (2006) Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol Biochem 44:483–493

    Article  CAS  PubMed  Google Scholar 

  99. Swidzinski JA, Sweetlove LJ, Leaver CJ (2002) A custom microarray analysis of gene expression during programmed cell death in Arabidopsis thaliana. Plant J 30:431–446

    Article  CAS  PubMed  Google Scholar 

  100. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. Plos One 8:e718

    Article  CAS  Google Scholar 

  101. Chen H, Osuna D, Colville L, Lorenzo O, Graeber K, Küster H, Leubner-Metzger G, Kranner I (2013) Transcriptome-wide mapping of pea seed ageing reveals a pivotal role for genes related to oxidative stress and programmed cell death. PLoS One 8:e78471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Howell SH (2013) Endoplasmic reticulum stress responses in plants. Annu Rev Plant Biol 64:477–499

    Article  CAS  PubMed  Google Scholar 

  103. Liu Y, Burgos JS, Deng Y, Srivastava R, Howell SH, Bassham DC (2013) Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis. Plant Cell 24:4635–4651

    Article  CAS  Google Scholar 

  104. Lisbona F, Rojas-Rivera D, Thielen P, Zamorano S, Todd D, Martinon F, Glavic A, Kress C, Lin JH, Walter P, Reed JC, Glimcher LH, Hetz C (2009) BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1α. Mol Cell 33:679–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kawai-Yamada M, Ohori Y, Uchimiya H (2004) Dissection of Arabidopsis Bax Inhibitor-1 suppressing Bax-, hydrogen peroxide-, and salicylic acid-induced cell death. Plant Cell 16:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Matsumura H, Nirasawa S, Kiba A, Urasaki N, Saitoh H, Ito M, Kawai-Yamada M, Uchimiya H, Terauchi R (2003) Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L.) cells. Plant J 33:425–434

    Article  CAS  PubMed  Google Scholar 

  107. Watanabe N, Lam E (2006) Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant J 45:884–894

    Article  CAS  PubMed  Google Scholar 

  108. Watanabe N, Lam E (2008) BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J Biol Chem 283:3200–3210

    Article  CAS  PubMed  Google Scholar 

  109. Yue H, Nie S, Xing D (2012) Over-expression of Arabidopsis Bax inhibitor-1 delays methyl jasmonate-induced leaf senescence by suppressing the activation of MAP kinase 6. J Exp Bot 63:4463–4474

    Article  CAS  PubMed  Google Scholar 

  110. Kasaras A, Melzer M, Kunze R (2012) Arabidopsis senescence-associated protein DMP1 is involved in membrane remodeling of the ER and tonoplast. BMC Plant Biol 12:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bonneau L, Ge Y, Drury GE, Gallois P (2008) What happened to plant caspases? J Exp Bot 59:491–499

    Article  CAS  PubMed  Google Scholar 

  112. Kuroyanagi M, Yamada K, Hatsugai N, Kondo M, Nishimura M, Hara-Nishimura I (2005) Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J Biol Chem 280:32914–32920

    Article  CAS  PubMed  Google Scholar 

  113. Qiang X, Zechmann B, Reitz MU, Kogel KH, Schafer P (2012) The mutualistic fungus Piriformospora indica colonizes Arabidopsis roots by inducing an endoplasmic reticulum stress-triggered caspase-dependent cell death. Plant Cell 24:794–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hoeberichts FA, van Doorn WG, Vorst O, Hall RD, van Wordragen MF (2007) Sucrose prevents up-regulation of senescence-associated genes in carnation petals. J Exp Bot 58:2873–2885

    Article  CAS  PubMed  Google Scholar 

  115. Hunter DA, Steele BC, Reid MS (2002) Identification of genes associated with perianth senescence in daffodil (Narcissus pseudonarcissus L. ‘Dutch Master’). Plant Sci 163:13–21

    Article  CAS  Google Scholar 

  116. Yamada T, Ichimura K, Kanekatsu M, van Doorn WG (2009) Homologues of genes associated with programmed cell death in animal cells are differentially expressed during senescence of Ipomoea nil petals. Plant Cell Physiol 50:610–625

    Article  CAS  PubMed  Google Scholar 

  117. Hatsugai N, Iwasaki S, Tamura K, Kondo M, Fuji K, Ogasawara K, Nishimura M, Hara-Nishimura I (2009) A novel membrane fusion-mediated plant immunity against bacterial pathogens. Gene Dev 23:2496–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Han J-J, Lin W, Oda Y, Cui K-M, Fukuda H, He X-Q (2012) The proteasome is responsible for caspase-3-like activity during xylem development. Plant J 72:129–141

    Article  CAS  PubMed  Google Scholar 

  119. Battelli R, Lombardi L, Rogers HJ, Picciarelli P, Lorenzi R, Ceccarelli N (2011) Changes in ultrastructure, protease and caspase-like activities during flower senescence in Lilium longiflorum. Plant Sci 180:716–725

    Article  CAS  PubMed  Google Scholar 

  120. Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov PV (2011) Metacaspases. Cell Death Differ 18:1279–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. He R, Drury GE, Rotari VI, Gordon A, Willer M, Farzaneh T, Woltering EJ, Gallois P (2008) Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis. J Biol Chem 283:774–783

    Article  CAS  PubMed  Google Scholar 

  122. Watanabe N, Lam E (2011) Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses. Plant J 66:969–982

    Article  CAS  PubMed  Google Scholar 

  123. Coll NS, Vercammen D, Smidler A, Clover C, Van Breusegem F, Dangl JL, Epple P (2010) Arabidopsis type I metacaspases control cell death. Science 330:1393–1397

    Article  CAS  PubMed  Google Scholar 

  124. Suarez MF, Filonova LH, Smertenko A, Savenkov EI, Clapham DH, von Arnold S, Zhivotovsky B, Bozhkov PV (2004) Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr Biol 14:R339–R340

    Article  CAS  PubMed  Google Scholar 

  125. Minina EA, Filonova LH, Fukada K, Savenkov EI, Gogvadze V, Clapham D, Sanchez-Vera V, Suarez MF, Zhivotovsky B, Daniel G, Smertenko A, Bozhkov PV (2013) Autophagy and metacaspase determine the mode of cell death in plants. J Cell Biol 203:917–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kwon SI, Hwang DJ (2013) Expression analysis of the metacaspase gene family in Arabidopsis. J Plant Biol 56:391–398

    Article  CAS  Google Scholar 

  127. Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yoshida S, Ito M, Callis J, Nishida I, Watanabe A (2002) A delayed leaf senescence mutant is defective in arginyl-tRNA:protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis. Plant J 32:129–137

    Article  CAS  PubMed  Google Scholar 

  129. Peng M, Hannam C, Gu H, Bi YM, Rothstein SJ (2007) A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J 50:320–337

    Article  CAS  PubMed  Google Scholar 

  130. Raab S, Drechsel G, Zarepour M, Hartung W, Koshiba T, Bittner F, Hoth S (2009) Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis. Plant J 59:39–51

    Article  CAS  PubMed  Google Scholar 

  131. Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Vogelmann K, Drechsel G, Bergler J, Subert C, Philippar K, Soll J, Engelmann JC, Engelsdorf T, Voll LM, Hoth S (2012) Early senescence and cell death in Arabidopsis saul1 mutants involves the PAD4-dependent salicylic acid pathway. Plant Physiol 159:1477–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Smart CM (1994) Gene expression during senescence. New Phytol 126:419–448

    Article  CAS  PubMed  Google Scholar 

  134. Monastyrska I, Rieter E, Klionsky DJ, Reggiori F (2009) Multiple roles of the cytoskeleton in autophagy. Biol Rev Camb Philos Soc 84:431–448

    Article  PubMed  PubMed Central  Google Scholar 

  135. Hocking PJ, Mason L (1993) Accumulation, distribution and redistribution of dry matter and mineral nutrients in fruits of canola (oilseed rape), and the effects of nitrogen fertilizer and windrowing. Aust J Agric Res 44:1377–1388

    Article  Google Scholar 

  136. Belenghi B, Salomon M, Levine A (2004) Caspase-like activity in the seedlings of Pisum sativum eliminates weaker shoots during early vegetative development by induction of cell death. J Exp Bot 55:889–897

    Article  CAS  PubMed  Google Scholar 

  137. Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149:885–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xie QE, Liu ID, Yu SX, Wang RF, Fan ZX, Wang YG, Shen FF (2008) Detection of DNA ladder during cotyledon senescence in cotton. Biol Plant 52:654–659

    Article  CAS  Google Scholar 

  139. Spence J, Vercher Y, Gates P, Harris N (1996) ‘Pod shatter’ in Arabidopsis thaliana, Brassica napus and B. juncea. J Microsci 181:195–203

    Article  Google Scholar 

  140. Carbonell-Bejerano P, Urbez C, Carbonell J, Granell A, Perez-Amador MA (2010) A fertilization-independent developmental program triggers partial fruit development and senescence processes in pistils of Arabidopsis. Plant Physiol 154:163–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Carbonell J, Garcia-Martínez JL (1985) Ribulose-1,5-bisphosphate carboxylase and fruit set or degeneration of unpollinated ovaries of Pisum sativum L. Planta 164:534–539

    Article  CAS  PubMed  Google Scholar 

  142. Carbonell-Bejerano P, Urbez C, Granell A, Carbonell J, Perez-Amador MA (2011) Ethylene is involved in pistil fate by modulating the onset of ovule senescence and the GA-mediated fruit set in Arabidopsis. BMC Plant Biol 11:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yi W, Law SE, Mccoy D, Wetzstein HY (2006) Stigma development and receptivity in Almond (Prunus dulcis). Ann Bot (Lond) 97:57–63

    Article  Google Scholar 

  144. Huang Z, Zhu J, Mu X, Lin J (2004) Pollen dispersion, pollen viability and pistil receptivity in Leymus chinensis. Ann Bot (Lond) 93:295–301

    Article  Google Scholar 

  145. Page T, Griffiths G, Buchanan-Wollaston V (2001) Molecular and biochemical characterization of postharvest senescence in Broccoli. Plant Physiol 125:718–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kingston-Smith AH, Davies TE, Edwards JE, Theodorou MK (2008) From plants to animals; the role of plant cell death in ruminant herbivores. J Exp Bot 59:521–532

    Article  CAS  PubMed  Google Scholar 

  147. Yamada T, van Ichimura K, Doorn WG (2007) Relationship between petal abscission and programmed cell death in Prunus yedoensis and Delphinium. Planta 226:1195–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yamada T, Ichimura K, van Doorn WG (2006) DNA degradation and nuclear degeneration during programmed cell death in petals of Antirrhinum, Argyranthemum, and Petunia. J Exp Bot 57:3543–3552

    Article  CAS  PubMed  Google Scholar 

  149. Walters C (1998) Understanding the mechanisms and kinetics of seed aging. Seed Sci Res 8:223–244

    Article  CAS  Google Scholar 

  150. Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673

    Article  CAS  PubMed  Google Scholar 

  151. Osborne DJ, Sharon R, Ben-Ishai R (1981) Studies on DNA integrity and DNA repair in germinating embryos of rye (Secale cereale). Israel J Bot 29:259–272

    CAS  Google Scholar 

  152. Kranner I, Chen HY, Pritchard HW, Pearce SR, Birtic S (2011) Inter-nucleosomal DNA fragmentation and loss of RNA integrity during seed aging. Plant Growth Regul 63:63–72

    Article  CAS  Google Scholar 

  153. McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27:177–237

    Google Scholar 

  154. Kibinza S, Bazin J, Bailly C, Farrant JM, Corbineau F, El-Maarouf-Bouteau H (2011) Catalase is a key enzyme in seed recovery from ageing during priming. Plant Sci 181:309–315

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilary J. Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rogers, H.J. (2015). Senescence-Associated Programmed Cell Death. In: Gunawardena, A.N., McCabe, P.F. (eds) Plant Programmed Cell Death. Springer, Cham. https://doi.org/10.1007/978-3-319-21033-9_9

Download citation

Publish with us

Policies and ethics