Skip to main content

To Live or Die: Autophagy in Plants

  • Chapter
Plant Programmed Cell Death

Abstract

Turnover of macromolecules is critical for cell homeostasis, nutrient recycling, and clearance of damage during environmental stress. These processes typically contribute to cell survival and function. Cell death pathways also require macromolecule degradation, as intracellular components are broken down as part of the death process. Autophagy is a self-digestion mechanism that functions in all of these processes by transferring cell parts to the vacuole for degradation by vacuolar hydrolases, followed by recycling of the breakdown products. How the function of autophagy switches between cell survival and cell death is still unknown. Autophagy is activated by a wide variety of stress conditions and developmental cues, and the signaling pathways for activation in plants are just beginning to be elucidated. In this chapter we describe the molecular mechanism and potential substrates of autophagy, its regulation in response to various signals, its physiological roles during development and stress, and the relationship between autophagy and programmed cell death in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4E-BP1:

eIF4E-binding protein 1

AML1:

Arabidopsis Mei2-like 1

ATF6:

Activating transcription factor 6

ATG:

Autophagy-related

EBP1:

ErbB-3 epidermal growth factor receptor binding protein

ER:

Endoplasmic reticulum

HR:

Hypersensitive response

IRE1:

Inositol-requiring enzyme-1

LST8:

Lethal with Sec Thirteen 8

MAMP:

Microbe-associated molecular pattern

PAMP:

Pathogen-associated molecular pattern

PAS:

Phagophore assembly site

PCD:

Programmed cell death

PE:

Phosphatidylinositol

PP2A:

Protein phosphatase 2A

PtdIns3K:

Phosphatidylinositol-3-kinase

RAPTOR:

Regulatory-associated protein of TOR

ROS:

Reactive oxygen species

S6K:

Ribosomal p70 S6 kinase

SA:

Salicylic acid

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

TOR:

Target of rapamycin

UPR:

Unfolded protein response

VPE:

Vacuolar processing enzyme

VPS:

Vacuolar protein sorting

References

  1. Liu Y, Bassham DC (2012) Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol 63:215–237

    Article  CAS  PubMed  Google Scholar 

  2. Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K (2006) Autophagy in development and stress responses of plants. Autophagy 2(1):2–11

    Article  CAS  PubMed  Google Scholar 

  3. Herman EM, Baumgartner B, Chrispeels MJ (1981) Uptake and apparent digestion of cytoplasmic organelles by protein bodies (protein storage vacuoles) in mung bean cotyledons. Eur J Cell Biol 24:226–235

    CAS  PubMed  Google Scholar 

  4. Melroy DL, Herman EM (1991) TIP, an integral membrane protein of the protein-storage vacuoles of the soybean cotyledon undergoes developmentally regulated membrane accumulation and removal. Planta 184:113–122

    Article  CAS  PubMed  Google Scholar 

  5. Van Der Wilden W, Herman EM, Chrispeels MJ (1980) Protein bodies of mung bean cotyledons as autophagic organelles. Proc Natl Acad Sci USA 77:428–432

    Article  PubMed  PubMed Central  Google Scholar 

  6. Matile P, Winkenbach F (1971) Function of lysosomes and lysosomal enzymes in the senescing corolla of the morning glory Ipomoea purpurea. J Exp Bot 22:759–771

    Article  CAS  Google Scholar 

  7. Smith MT, Saks Y, van Staden J (1992) Ultrastructural changes in the petals of senescing flowers of Dianthus caryophyllus L. Ann Bot (Lond) 69:277–285

    Article  Google Scholar 

  8. Levanony H, Rubin R, Altshuler Y, Galili G (1992) Evidence of a novel route of wheat storage proteins to vacuoles. J Cell Biol 119:1117–1128

    Article  CAS  PubMed  Google Scholar 

  9. Coleman CE, Herman EM, Takasaki K, Larkins BA (1996) The maize α-zein sequesters γ-zein and stabilizes its accumulation in protein bodies of transgenic tobacco endosperm. Plant Cell 8:2335–2345

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bollhöner B, Prestele J, Tuominen H (2012) Xylem cell death: emerging understanding of regulation and function. J Exp Bot 63:1081–1094

    Article  PubMed  CAS  Google Scholar 

  11. Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M (2005) Vacuolar processing enzyme: an executor of plant cell death. Curr Opin Plant Biol 8(4):404–408

    Article  CAS  PubMed  Google Scholar 

  12. Lamb CA, Yoshimori T, Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14(12):759–774

    Article  CAS  PubMed  Google Scholar 

  13. Monastyrska I, Rieter E, Klionsky DJ, Reggiori F (2009) Multiple roles of the cytoskeleton in autophagy. Biol Rev 84(3):431–448

    Article  PubMed  Google Scholar 

  14. van Doorn WG, Papini A (2013) Ultrastructure of autophagy in plant cells: a review. Autophagy 9(12):1922–1936

    Article  PubMed  CAS  Google Scholar 

  15. Fullgrabe J, Lynch-Day MA, Heldring N, Li WB, Struijk RB, Ma Q, Hermanson O, Rosenfeld MG, Klionsky DJ, Joseph B (2013) The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature 500(7463):468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273(7):3963–3966

    Article  CAS  PubMed  Google Scholar 

  18. Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152(3):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150(6):1507–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20(21):5971–5981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suzuki K, Akioka M, Kondo-Kakuta C, Yamamoto H, Ohsumi Y (2013) Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J Cell Sci 126(Pt 11):2534–2544

    CAS  PubMed  Google Scholar 

  22. Fujioka Y, Noda NN, Fujii K, Yoshimoto K, Ohsumi Y, Inagaki F (2008) In vitro reconstitution of plant ATG8 and ATG12 conjugation systems essential for autophagy. J Biol Chem 283(4):1921–1928

    Article  CAS  PubMed  Google Scholar 

  23. Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y (2002) Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129(3):1181–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  CAS  PubMed  Google Scholar 

  25. Suttangkakul A, Li FQ, Chung T, Vierstra RD (2011) The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23(10):3761–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395(6700):395–398

    Article  CAS  PubMed  Google Scholar 

  27. Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138(4):2097–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Phillips AR, Suttangkakul A, Vierstra RD (2008) The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178(3):1339–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y, Kominami E (1999) Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol Biol Cell 10(5):1367–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tanida I, Tanida-Miyake E, Ueno T, Kominami E (2001) The human homolog of Saccharomyces cerevisiae Apg7p is a protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 276(3):1701–1706

    Article  CAS  PubMed  Google Scholar 

  31. Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T, Ohsumi Y (1999) Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 18(19):5234–5241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mizushima N, Noda T, Ohsumi Y (1999) Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J 18(14):3888–3896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuma A, Mizushima N, Ishihara N, Ohsumi Y (2002) Formation of the similar to 350-kDa Apg12-Apg5 center dot Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 277(21):18619–18625

    Article  CAS  PubMed  Google Scholar 

  34. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151(2):263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y (2000) A ubiquitin-like system mediates protein lipidation. Nature 408(6811):488–492

    Article  CAS  PubMed  Google Scholar 

  36. Ichimura Y, Imamura Y, Emoto K, Umeda M, Noda T, Ohsumi Y (2004) In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J Biol Chem 279(39):40584–40592

    Article  CAS  PubMed  Google Scholar 

  37. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282(52):37298–37302

    Article  CAS  PubMed  Google Scholar 

  38. Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27(6):421–429

    Article  PubMed  Google Scholar 

  39. Noda NN, Fujioka Y, Hanada T, Ohsumi Y, Inagaki F (2013) Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep 14(2):206–211

    Article  CAS  PubMed  Google Scholar 

  40. Nair U, Yen WL, Mari M, Cao Y, Xie ZP, Baba M, Reggiori F, Klionsky DJ (2012) A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8(5):780–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori H, Noda T, Haraguchi T, Hiraoka Y, Amano A, Yoshimori T (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495(7441):389–393

    Article  CAS  PubMed  Google Scholar 

  42. Ge L, Melville D, Zhang M, Schekman R (2013) The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife 2

    Google Scholar 

  43. Zoppino FCM, Militello RD, Slavin I, Alvarez C, Colombo MI (2010) Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 11(9):1246–1261

    Article  CAS  PubMed  Google Scholar 

  44. Graef M, Friedman JR, Graham C, Babu M, Nunnari J (2013) ER exit sites are physical and functional core autophagosome biogenesis components. Mol Biol Cell 24(18):2918–2931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11(12):1433–1477

    Article  CAS  PubMed  Google Scholar 

  46. Yla-Anttila P, Vihinen H, Jokita E, Eskelinen EL (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5(8):1180–1185

    Article  PubMed  Google Scholar 

  47. van der Vaart A, Griffith J, Reggiori F (2010) Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol Biol Cell 21(13):2270–2284

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12(10):1021

    Article  CAS  Google Scholar 

  49. Longatti A, Lamb CA, Razi M, Yoshimura S, Barr FA, Tooze SA (2012) TBC1D14 regulates autophagosome formation via Rab11-and ULK1-positive recycling endosomes. J Cell Biol 197(5):659–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Knaevelsrud H, Soreng K, Raiborg C, Haberg K, Rasmuson F, Brech A, Liestol K, Rusten TE, Stenmark H, Neufeld TP, Carlsson SR, Simonsen A (2013) Membrane remodeling by the PX-BAR protein SNX18 promotes autophagosome formation. J Cell Biol 202(2):331–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y (2012) Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198(2):219–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim J, Huang WP, Stromhaug PE, Klionsky DJ (2002) Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J Biol Chem 277(1):763–773

    Article  CAS  PubMed  Google Scholar 

  53. Rieter E, Vinke F, Bakula D, Cebollero E, Ungermann C, Proikas-Cezanne T, Reggiori F (2013) Atg18 function in autophagy is regulated by specific sites within its beta-propeller. J Cell Sci 126(2):593–604

    CAS  PubMed  Google Scholar 

  54. Zhuang X, Wang H, Lam SK, Gao C, Wang X, Cai Y, Jiang L (2013) A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis. Plant Cell 25(11):4596–4615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Onodera J, Ohsumi Y (2004) Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae. J Biol Chem 279(16):16071–16076

    Article  CAS  PubMed  Google Scholar 

  56. Floyd BE, Morriss SC, Macintosh GC, Bassham DC (2012) What to eat: evidence for selective autophagy in plants. J Int Plant Biol 54(11):907–920

    CAS  Google Scholar 

  57. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145

    Article  CAS  PubMed  Google Scholar 

  58. Kirkin V, Lamark T, Johansen T, Dikic I (2009) NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets. Autophagy 5(5):732–733

    Article  CAS  PubMed  Google Scholar 

  59. Waters S, Marchbank K, Solomon E, Whitehouse C, Gautel M (2009) Interactions with LC3 and polyubiquitin chains link nbr1 to autophagic protein turnover. FEBS Lett 583(12):1846–1852

    Article  CAS  PubMed  Google Scholar 

  60. Ponpuak M, Davis AS, Roberts EA, Delgado MA, Dinkins C, Zhao Z, Virgin HW, Kyei GB, Johansen T, Vergne I, Deretic V (2010) Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 32(3):329–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N (2011) Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell 44(2):279–289

    Article  CAS  PubMed  Google Scholar 

  62. Svenning S, Lamark T, Krause K, Johansen T (2011) Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy 7(9):993–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zientara-Rytter K, Lukomska J, Moniuszko G, Gwozdecki R, Surowiecki P, Lewandowska M, Liszewska F, Wawrzynska A, Sirko A (2011) Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors. Autophagy 7(10):1145–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou J, Wang J, Cheng Y, Chi YJ, Fan B, Yu JQ, Chen Z (2013) NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet 9(1):e1003196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Moreau K, Renna M, Rubinsztein DC (2013) Connections between SNAREs and autophagy. Trends Biochem Sci 38(2):57–63

    Article  CAS  PubMed  Google Scholar 

  66. Darsow T, Rieder SE, Emr SD (1997) A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 138(3):517–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. von Mollard GF, Stevens TH (1999) The Saccharomyces cerevisiae v-SNARE Vti1p is required for multiple membrane transport pathways to the vacuole. Mol Biol Cell 10(6):1719–1732

    Article  Google Scholar 

  68. Harding TM, Morano KA, Scott SV, Klionsky DJ (1995) Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 131(3):591–602

    Article  CAS  PubMed  Google Scholar 

  69. Kim J, Dalton VM, Eggerton KP, Scott SV, Klionsky DJ (1999) Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol Biol Cell 10(5):1337–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sato TK, Darsow T, Emr SD (1998) Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking. Mol Cell Biol 18(9):5308–5319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sato TK, Rehling P, Peterson MR, Emr SD (2000) Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Mol Cell Biol 6(3):661–671

    CAS  Google Scholar 

  72. Wang CW, Stromhaug PE, Kauffmann EJ, Weisman LS, Klionsky DJ (2003) Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J Cell Biol 163(5):973–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang CW, Stromhaug PE, Shima J, Klionsky DJ (2002) The Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathways. J Biol Chem 277(49):47917–47927

    Article  CAS  PubMed  Google Scholar 

  74. Itakura E, Kishi-Itakura C, Mizushima N (2012) The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151(6):1256–1269

    Article  CAS  PubMed  Google Scholar 

  75. Sanmartin M, Ordonez A, Sohn EJ, Robert S, Sanchez-Serrano JJ, Surpin MA, Raikhel NV, Rojo E (2007) Divergent functions of VTI12 and VTI11 in trafficking to storage and lytic vacuoles in Arabidopsis. Proc Natl Acad Sci USA 104(9):3645–3650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Surpin M, Zheng HJ, Morita MT, Saito C, Avila E, Blakeslee JJ, Bandyopadhyay A, Kovaleva V, Carter D, Murphy A, Tasaka M, Raikhel N (2003) The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell 15(12):2885–2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nakamura N, Matsuura A, Wada Y, Ohsumi Y (1997) Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae. J Biochem 121(2):338–344

    Article  CAS  PubMed  Google Scholar 

  78. Epple UD, Suriapranata I, Eskelinen EL, Thumm M (2001) Aut5/Cvt17p, a putative lipase essential for disintegration of autophagic bodies inside the vacuole. J Bacteriol 183(20):5942–5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Teter SA, Eggerton KP, Scott SV, Kim J, Fischer AM, Klionsky DJ (2001) Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem 276(3):2083–2087

    Article  CAS  PubMed  Google Scholar 

  80. Yang ZF, Huang J, Geng JF, Nair U, Klionsky DJ (2006) Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 17(12):5094–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Takatsuka C, Inoue Y, Higuchi T, Hillmer S, Robinson DG, Moriyasu Y (2011) Autophagy in tobacco BY-2 cells cultured under sucrose starvation conditions: isolation of the autolysosome and its characterization. Plant Cell Physiol 52(12):2074–2087

    Article  CAS  PubMed  Google Scholar 

  82. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vaux DL (2002) Apoptosis timeline. Cell Death Differ 9(4):349–354

    Article  CAS  PubMed  Google Scholar 

  84. Stevens JB, Abdallah BY, Liu G, Horne SD, Bremer SW, Ye KJ, Huang JY, Kurkinen M, Ye CJ, Heng HHQ (2013) Heterogeneity of cell death. Cytogenet Genome Res 139(3):164–173

    Article  CAS  PubMed  Google Scholar 

  85. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochem Biophys Acta 1833(12):3448–3459

    Article  CAS  PubMed  Google Scholar 

  86. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11

    Article  CAS  PubMed  Google Scholar 

  87. Galluzzi L, Vanden Berghe T, Vanlangenakker N, Buettner S, Eisenberg T, Vandenabeele P, Madeo F, Kroemer G (2011) Programmed necrosis from molecules to health and disease. Int Rev Cell Mol Biol 289:1–35

    Article  CAS  PubMed  Google Scholar 

  88. Berry DL, Baehrecke EH (2007) Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131(6):1137–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yu L, Strandberg L, Lenardo MJ (2008) The selectivity of autophagy and its role in cell death and survival. Autophagy 4(5):567–573

    Article  PubMed  Google Scholar 

  90. Onodera J, Ohsumi Y (2005) Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem 280(36):31582–31586

    Article  CAS  PubMed  Google Scholar 

  91. Suzuki SW, Onodera J, Ohsumi Y (2011) Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction. PLoS One 6(2)

    Google Scholar 

  92. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304(5676):1500–1502

    Article  CAS  PubMed  Google Scholar 

  93. Scott RC, Juhasz G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Macintosh RL, Ryan KM (2013) Autophagy in tumour cell death. Semin Cancer Biol 23(5):344–351

    Article  CAS  PubMed  Google Scholar 

  95. Liu B, Wen X, Cheng Y (2013) Survival or death: disequilibrating the oncogenic and tumor suppressive autophagy in cancer. Cell Death Dis 4:e892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. van Doorn WG (2011) Classes of programmed cell death in plants, compared to those in animals. J Exp Bot 62(14):4749–4761

    Article  PubMed  CAS  Google Scholar 

  97. van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, Mur LA, Petersen M, Smertenko A, Taliansky M, Van Breusegem F, Wolpert T, Woltering E, Zhivotovsky B, Bozhkov PV (2011) Morphological classification of plant cell deaths. Cell Death Differ 18(8):1241–1246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Reape TJ, McCabe PF (2008) Tansley review: Apoptotic-like programmed cell death in plants. New Phytol 180:13–26

    Article  CAS  PubMed  Google Scholar 

  99. Smertenko A, Franklin-Tong VE (2011) Organization and regulation of the cytoskeleton in plant programmed cell death. Cell Death Differ 18:1263–1270

    Google Scholar 

  100. Dickman MB, Fluhr R (2013) Centrality of host cell death in plant-microbe interactions. Annu Rev Phytopathol 51:25.1–25.28

    Article  CAS  Google Scholar 

  101. Cacas JL (2010) Devil inside: does plant programmed cell death involve the endomembrane system? Plant Cell Environ 33(9):1453–1473

    CAS  PubMed  Google Scholar 

  102. Diamond M, Reape TJ, Rocha O, Doyle SM, Kacprzyk J, Doohan FM, McCabe PF (2013) The Fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death. PLoS One 8(7):e69542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kunikowska A, Byczkowska A, Doniak M, Kaźmierczak A (2013) Cytokinins resume: their signaling and role in programmed cell death in plants. Plant Cell Rep 32(6):771–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li Z, Xing D (2011) Mechanistic study of mitochondria-dependent programmed cell death induced by aluminium phytotoxicity using fluorescence techniques. J Exp Bot 62(1):331–343

    Article  CAS  PubMed  Google Scholar 

  105. Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov PV (2011) Metacaspases. Cell Death Differ 18(8):1279–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Balk J, Leaver CJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13(8):1803–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Watanabe N, Lam E (2005) Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 280(15):14691–14699

    Article  CAS  PubMed  Google Scholar 

  108. Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, Kroemer G (2008) To die or not to die: that is the autophagic question. Curr Mol Med 8(2):78–91

    Article  CAS  PubMed  Google Scholar 

  109. Loos B, Engelbrecht AM, Lockshin RA, Klionsky DJ, Zakeri Z (2013) The variability of autophagy and cell death susceptibility: unanswered questions. Autophagy 9(9):1270–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10(3):117–122

    Article  PubMed  CAS  Google Scholar 

  111. Obara K, Kuriyama H, Fukuda H (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiol 125(2):615–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Drew MC, He CJ, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5(3):123–127

    Article  CAS  PubMed  Google Scholar 

  113. Evans DE (2004) Aerenchyma formation. New Phytol 161(1):35–49

    Article  Google Scholar 

  114. Hatsugai N, Kuroyanagi M, Nishimura M, Hara-Nishimura I (2006) A cellular suicide strategy of plants: vacuole-mediated cell death. Apoptosis 11(6):905–911

    Article  CAS  PubMed  Google Scholar 

  115. Rojo E, Martin R, Carter C, Zouhar J, Pan SQ, Plotnikova J, Jin HL, Paneque M, Sanchez-Serrano JJ, Baker B, Ausubel FM, Raikhel NV (2004) VPE gamma exhibits a caspase-like activity that contributes to defense against pathogens. Curr Biol 14(21):1897–1906

    Article  CAS  PubMed  Google Scholar 

  116. Hara-Nishimura I, Hatsugai N (2011) The role of vacuole in plant cell death. Cell Death Differ 18(8):1298–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197(3):696–711

    Article  PubMed  Google Scholar 

  118. Kirkwood TB (2002) Evolution of ageing. Mech Ageing Dev 123(7):737–745

    Article  PubMed  Google Scholar 

  119. Thomas H, Sadras VO (2001) The capture and gratuitous disposal of resources by plants. Funct Ecol 15(1):3–12

    Article  Google Scholar 

  120. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  121. Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 277(36):33105–33114

    Article  CAS  PubMed  Google Scholar 

  122. Xiong Y, Contento AL, Bassham DC (2005) AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J 42(4):535–546

    Article  CAS  PubMed  Google Scholar 

  123. Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21(9):2914–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62(10):3321–3338

    Article  CAS  PubMed  Google Scholar 

  125. Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149(2):885–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T (2008) Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148(1):142–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Minina EA, Filonova LH, Fukada K, Savenkov EI, Gogvadze V, Clapham D, Sanchez-Vera V, Suarez MF, Zhivotovsky B, Daniel G, Smertenko A, Bozhkov PV (2013) Autophagy and metacaspase determine the mode of cell death in plants. J Cell Biol 203(6):917–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wertman J, Lord CE, Dauphinee AN, Gunawardena AH (2012) The pathway of cell dismantling during programmed cell death in lace plant (Aponogeton madagascariensis) leaves. BMC Plant Biol 12:115

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kwon SI, Cho HJ, Lee JS, Jin H, Shin SJ, Kwon M, Noh EW, Park OK (2011) Overexpression of constitutively active Arabidopsis RabG3b promotes xylem development in transgenic poplars. Plant Cell Environ 34(12):2212–2224

    Article  CAS  PubMed  Google Scholar 

  130. Kwon SI, Cho HJ, Park OK (2010) Role of Arabidopsis RabG3b and autophagy in tracheary element differentiation. Autophagy 6(8):1187–1189

    Article  CAS  PubMed  Google Scholar 

  131. Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17(10):2832–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kwon SI, Cho HJ, Kim SR, Park OK (2013) The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant Physiol 161(4):1722–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hofius D, Munch D, Bressendorff S, Mundy J, Petersen M (2011) Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death Differ 18(8):1257–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lenz HD, Haller E, Melzer E, Kober K, Wurster K, Stahl M, Bassham DC, Vierstra RD, Parker JE, Bautor J, Molina A, Escudero V, Shindo T, van der Hoorn RA, Gust AA, Nurnberger T (2011) Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J 66(5):818–830

    Article  CAS  PubMed  Google Scholar 

  135. Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O, Jorgensen LB, Jones JD, Mundy J, Petersen M (2009) Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137(4):773–783

    Article  CAS  PubMed  Google Scholar 

  136. Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121(4):567–577

    Article  CAS  PubMed  Google Scholar 

  137. Kirkegaard K, Taylor MP, Jackson WT (2004) Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2(4):301–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Patel S, Dinesh-Kumar SP (2008) Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 4(1):20–27

    Article  CAS  PubMed  Google Scholar 

  139. Lenz HD, Haller E, Melzer E, Gust AA, Nurnberger T (2011) Autophagy controls plant basal immunity in a pathogenic lifestyle-dependent manner. Autophagy 7(7):773–774

    Article  PubMed  Google Scholar 

  140. Lai Z, Wang F, Zheng Z, Fan B, Chen Z (2011) A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J 66(6):953–968

    Article  CAS  PubMed  Google Scholar 

  141. Wang Y, Nishimura MT, Zhao T, Tang D (2011) ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J 68(1):74–87

    Article  CAS  PubMed  Google Scholar 

  142. Aubert S, Gout E, Bligny R, MartyMazars D, Barrieu F, Alabouvette J, Marty F, Douce R (1996) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133(6):1251–1263

    Article  CAS  PubMed  Google Scholar 

  143. Moriyasu Y, Ohsumi Y (1996) Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol 111(4):1233–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Contento AL, Kim SJ, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol 135(4):2330–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen MH, Liu LF, Chen YR, Wu HK, Yu SM (1994) Expression of alpha-amylases, carbohydrate-metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant J 6(5):625–636

    Article  CAS  PubMed  Google Scholar 

  146. Chung T, Suttangkakul A, Vierstra RD (2009) The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol 149(1):220–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu Y, Xiong Y, Bassham DC (2009) Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5(7):954–963

    Article  CAS  PubMed  Google Scholar 

  148. Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007) Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143(1):291–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shin JH, Yoshimoto K, Ohsumi Y, Jeon JS, An G (2009) OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol Cells 27(1):67–74

    Article  CAS  PubMed  Google Scholar 

  150. Liu Y, Soto-Burgos J, Deng Y, Srivastava R, Howell SH, Bassham DC (2012) Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis. Plant Cell 24(11):4635–4651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Xiong Y, Contento AL, Bassham DC (2007) Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 3(3):257–258

    Article  CAS  PubMed  Google Scholar 

  152. Pu Y, Bassham DC (2013) Links between ER stress and autophagy in plants. Plant Signal Behav 8(6)

    Google Scholar 

  153. Liu Y, Bassham DC (2013) Degradation of the endoplasmic reticulum by autophagy in plants. Autophagy 9(4):622–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bassham DC (2009) Function and regulation of macroautophagy in plants. Biochem Biophys Acta 1793(9):1397–1403

    Article  CAS  PubMed  Google Scholar 

  155. Affenzeller MJ, Darehshouri A, Andosch A, Lutz C, Lutz-Meindl U (2009) Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J Exp Bot 60(3):939–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang J, Li XR, Liu YB, Zhao X (2010) Salt stress induces programmed cell death in Thellungiella halophila suspension-cultured cells. J Plant Physiol 167(14):1145–1151

    Article  CAS  PubMed  Google Scholar 

  157. Zhang WN, Chen WL (2011) Role of salicylic acid in alleviating photochemical damage and autophagic cell death induction of cadmium stress in Arabidopsis thaliana. Photochem Photobiol Sci 10(6):947–955

    Article  CAS  PubMed  Google Scholar 

  158. Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolai M, Bedu M, Robaglia C, Meyer C (2007) The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep 8(9):864–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Leiber RM, John F, Verhertbruggen Y, Diet A, Knox JP, Ringli C (2010) The TOR pathway modulates the structure of cell walls in Arabidopsis. Plant Cell 22(6):1898–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Diaz-Troya S, Perez-Perez ME, Florencio FJ, Crespo JL (2008) The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4(7):851–865

    Article  CAS  PubMed  Google Scholar 

  161. Choi JW, Chen J, Schreiber SL, Clardy J (1996) Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273(5272):239–242

    Article  CAS  PubMed  Google Scholar 

  162. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10(3):457–468

    Article  CAS  PubMed  Google Scholar 

  163. Wedaman KP, Reinke A, Anderson S, Yates J, McCaffery JM, Powers T (2003) Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol Biol Cell 14(3):1204–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA 99(9):6422–6427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hara K, Maruki Y, Long XM, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110(2):177–189

    Article  CAS  PubMed  Google Scholar 

  166. Anderson GH, Veit B, Hanson MR (2005) The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BMC Biol 3

    Google Scholar 

  167. Deprost D, Truong HN, Robaglia C, Meyer C (2005) An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development. Biochem Biophys Res Comm 326(4):844–850

    Article  CAS  PubMed  Google Scholar 

  168. Diaz-Troya S, Florencio FJ, Crespo JL (2008) Target of rapamycin and LST8 proteins associate with membranes from the endoplasmic reticulum in the unicellular green alga Chlamydomonas reinhardtii. Eukaryot Cell 7(2):212–222

    Article  CAS  PubMed  Google Scholar 

  169. Moreau M, Azzopardi M, Clement G, Dobrenel T, Marchive C, Renne C, Martin-Magniette ML, Taconnat L, Renou JP, Robaglia C, Meyer C (2012) Mutations in the Arabidopsis homolog of LST8/GbetaL, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell 24(2):463–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Raught B, Gingras AC, Sonenberg N (2001) The target of rapamycin (TOR) proteins. Proc Natl Acad Sci USA 98(13):7037–7044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ren MZ, Qiu SQ, Venglat P, Xiang DQ, Feng L, Selvaraj G, Datla R (2011) Target of rapamycin regulates development and ribosomal RNA expression through kinase domain in Arabidopsis. Plant Physiol 155(3):1367–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mahfouz MM, Kim S, Delauney AJ, Verma DPS (2006) Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell 18(2):477–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Xiong Y, Sheen J (2012) Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J Biol Chem 287(4):2836–2842

    Article  CAS  PubMed  Google Scholar 

  174. Ahn CS, Han JA, Lee HS, Lee S, Pai HS (2011) The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell 23(1):185–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Anderson GH, Hanson MR (2005) The Arabidopsis Mei2 homologue AML1 binds AtRaptor1B, the plant homologue of a major regulator of eukaryotic cell growth. BMC Plant Biol 5:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Horvath BM, Magyar Z, Zhang YX, Hamburger AW, Bako L, Visser RG, Bachem CW, Bogre L (2006) EBP1 regulates organ size through cell growth and proliferation in plants. EMBO J 25(20):4909–4920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Xiong Y, McCormack M, Li L, Hall Q, Xiang CB, Sheen J (2013) Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496(7444):181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G (1997) Rapamycin suppresses 5′ TOP mRNA translation through inhibition of p70s6k. EMBO J 16(12):3693–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sonenberg N, Gingras AC (1998) The mRNA 5′ cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol 10(2):268–275

    Article  CAS  PubMed  Google Scholar 

  180. Caldana C, Li Y, Leisse A, Zhang Y, Bartholomaeus L, Fernie AR, Willmitzer L, Giavalisco P (2013) Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. Plant J 73(6):897–909

    Article  CAS  PubMed  Google Scholar 

  181. Ren M, Venglat P, Qiu S, Feng L, Cao Y, Wang E, Xiang D, Wang J, Alexander D, Chalivendra S, Logan D, Mattoo A, Selvaraj G, Datla R (2012) Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell 24(12):4850–4874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K, Hara K, Tanaka N, Avruch J, Yonezawa K (2003) The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278(18):15461–15464

    Article  CAS  PubMed  Google Scholar 

  183. Liu Y, Bassham DC (2010) TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS One 5(7):e11883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Perez-Perez ME, Florencio FJ, Crespo JL (2010) Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiol 152(4):1874–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. de la Cruz HR, Aguilar R, de Jimenez ES (2004) Functional characterization of a maize ribosomal S6 protein kinase (ZmS6K), a plant ortholog of metazoan p70(S6K). Biochemistry 43(2):533–539

    Article  CAS  Google Scholar 

  186. Agredano-Moreno LT, de la Cruz HR, Martinez-Castilla LP, de Jimenez ES (2007) Distinctive expression and functional regulation of the maize (Zea mays L.) TOR kinase ortholog. Mol Biosyst 3(11):794–802

    Article  CAS  PubMed  Google Scholar 

  187. Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22(2):132–139

    Article  CAS  PubMed  Google Scholar 

  188. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10(7):458–467

    Article  CAS  PubMed  Google Scholar 

  189. Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, Yonezawa K, Ohsumi Y (2010) TOR directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 30(4):1049–1058

    Article  CAS  PubMed  Google Scholar 

  190. Li F, Vierstra RD (2012) Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci 17(9):526–537

    Article  CAS  PubMed  Google Scholar 

  191. Yoshimoto K (2012) Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol 53(8):1355–1365

    Article  CAS  PubMed  Google Scholar 

  192. Avin-Wittenberg T, Honig A, Galili G (2012) Variations on a theme: plant autophagy in comparison to yeast and mammals. Protoplasma 249(2):285–299

    Article  CAS  PubMed  Google Scholar 

  193. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  PubMed  Google Scholar 

  194. Vitale A, Boston RS (2008) Endoplasmic reticulum quality control and the unfolded protein response: insights from plants. Traffic 9(10):1581–1588

    Article  CAS  PubMed  Google Scholar 

  195. Otero JH, Lizak B, Hendershot LM (2010) Life and death of a BiP substrate. Semin Cell Dev Biol 21(5):472–478

    Article  CAS  PubMed  Google Scholar 

  196. Crespo JL (2012) BiP links TOR signaling to ER stress in Chlamydomonas. Plant Signal Behav 7(2):273–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Diaz-Troya S, Perez-Perez ME, Perez-Martin M, Moes S, Jeno P, Florencio FJ, Crespo JL (2011) Inhibition of protein synthesis by TOR inactivation revealed a conserved regulatory mechanism of the BiP chaperone in Chlamydomonas. Plant Physiol 157(2):730–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Cox JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87(3):391–404

    Article  CAS  PubMed  Google Scholar 

  199. Mori K, Kawahara T, Yoshida H, Yanagi H, Yura T (1996) Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells 1(9):803–817

    Article  CAS  PubMed  Google Scholar 

  200. Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins - involvement of basic leucine zipper transcription factors. J Biol Chem 273(50):33741–33749

    Article  CAS  PubMed  Google Scholar 

  201. Shi YG, Vattem KM, Sood R, An J, Liang JD, Stramm L, Wek RC (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 18(12):7499–7509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Koizumi N, Martinez IM, Kimata Y, Kohno K, Sano H, Chrispeels MJ (2001) Molecular characterization of two arabidopsis Ire1 homologs, endoplasmic reticulum-located transmembrane protein kinases. Plant Physiol 127(3):949–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Liu JX, Srivastava R, Che P, Howell SH (2007) An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. Plant Cell 19(12):4111–4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26(24):9220–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Chen Y, Brandizzi F (2013) IRE1: ER stress sensor and cell fate executor. Trends Cell Biol 23(11):547–555

    Article  CAS  PubMed  Google Scholar 

  206. Moreno AA, Mukhtar MS, Blanco F, Boatwright JL, Moreno I, Jordan MR, Chen YI, Brandizzi F, Dong XN, Orellana A, Pajerowska-Mukhtar KM (2012) IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS One 7(2)

    Google Scholar 

  207. Deng Y, Humbert S, Liu JX, Srivastava R, Rothstein SJ, Howell SH (2011) Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proc Natl Acad Sci USA 108(17):7247–7252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Zhang C, Shokat KM, Stroud RM, Walter P (2009) The unfolded protein response signals through high-order assembly of Ire1. Nature 457(7230):687–693

    Article  CAS  PubMed  Google Scholar 

  209. Nagashima Y, Mishiba K, Suzuki E, Shimada Y, Iwata Y, Koizumi N (2011) Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor. Sci Rep 1(29):1–10

    Google Scholar 

  210. Iwata Y, Koizumi N (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci USA 102(14):5280–5285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Mishiba K, Nagashima Y, Suzuki E, Hayashi N, Ogata Y, Shimada Y, Koizumi N (2013) Defects in IRE1 enhance cell death and fail to degrade mRNAs encoding secretory pathway proteins in the Arabidopsis unfolded protein response. Proc Natl Acad Sci USA 110(14):5713–5718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Okushima Y, Koizumi N, Yamaguchi Y, Kimata Y, Kohno K, Sano H (2002) Isolation and characterization of a putative transducer of endoplasmic reticulum stress in Oryza sativa. Plant Cell Physiol 43(5):532–539

    Article  CAS  PubMed  Google Scholar 

  213. Hayashi S, Wakasa Y, Takahashi H, Kawakatsu T, Takaiwa F (2012) Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice. Plant J 69(6):946–956

    Article  CAS  PubMed  Google Scholar 

  214. Lu SJ, Yang ZT, Sun L, Sun L, Song ZT, Liu JX (2012) Conservation of IRE1-regulated bZIP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER stress responses. Mol Plant 5(2):504–514

    Article  CAS  PubMed  Google Scholar 

  215. Li Y, Humbert S, Howell SH (2012) ZmbZIP60 mRNA is spliced in maize in response to ER stress. BMS Res Notes 5:144

    Article  CAS  Google Scholar 

  216. Wang B, Zheng J, Liu Y, Wang J, Wang G (2012) Cloning and characterization of the stress-induced bZIP gene ZmbZIP60 from maize. Mol Biol Rep 39(5):6319–6327

    Article  CAS  PubMed  Google Scholar 

  217. Howell SH (2013) Endoplasmic reticulum stress responses in plants. Annu Rev Plant Biol 64(64):477–499

    Article  CAS  PubMed  Google Scholar 

  218. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7(3):279–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34(3):259–269

    Article  CAS  PubMed  Google Scholar 

  220. Kraft C, Reggiori F, Peter M (2009) Selective types of autophagy in yeast. Biophys Biochem Acta Mol Cell Res 1793(9):1404–1412

    Article  CAS  Google Scholar 

  221. Reggiori F, Komatsu M, Finley K, Simonsen A (2012) Selective types of autophagy. Int J Cell Biol 2012:156272

    PubMed  PubMed Central  Google Scholar 

  222. Watanabe N, Lam E (2008) BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J Biol Chem 283(6):3200–3210

    Article  CAS  PubMed  Google Scholar 

  223. Levine B (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120(2):159–162

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work on autophagy in the author’s laboratory is supported by grants from the National Science Foundation (#MCB-1051818 and IOS-1353867 to DCB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane C. Bassham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Floyd, B.E., Pu, Y., Soto-Burgos, J., Bassham, D.C. (2015). To Live or Die: Autophagy in Plants. In: Gunawardena, A.N., McCabe, P.F. (eds) Plant Programmed Cell Death. Springer, Cham. https://doi.org/10.1007/978-3-319-21033-9_11

Download citation

Publish with us

Policies and ethics