Skip to main content
  • 1052 Accesses

Abstract

Accumulating evidence shows the presence of a subpopulation of cancer stem cells (CSCs) in many cancers including breast cancer. The breast cancer stem cells (BCSC) are resistant to traditional treatments and able to initiate tumorigenesis, suggesting that they may contribute to therapy resistance and relapse. The expression of specific markers in BCSCs and development of mouse model has facilitated the study and several intrinsic and extrinsic pathways maintaining BCSC population have been exploited. Several signal transduction pathways such as Wnt, Notch, Hedgehog, Bmi-1, PI3K/AKT and IL6 are known to regulate self-renewal pathways in normal stem cells; while in CSCs these pathways are normally dysregulated due to accumulated mutations and epigenetic changes. Understanding the signaling pathways through which CSCs regulate their self-renewal and maintenance, and hence tumor growth and metastasis is important for developing targeted therapies to abrogate CSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100(7):3983–3988

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alkema M, Wiegant J, Raap AK, Bems A, van Lohuizen M (1993) Characterization and chromosomal localization of the human proto-oncogene BMI-1. Hum Mol Genet 2(10):1597–1603

    CAS  PubMed  Google Scholar 

  • Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco MM, Dale TC, Smalley MJ (2003) Functional and molecular characterisation of mammary side population cells. Breast Cancer Res 5(1):R1–R8

    PubMed Central  PubMed  Google Scholar 

  • Arasada RR, Amann JM, Rahman MA, Huppert SS, Carbone DP (2014) EGFR blockade enriches for lung cancer stem–like cells through Notch3-dependent signaling. Cancer Res 74(19):5572–5584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Asselin-Labat M-L, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, Hartley L, Robb L, Grosveld FG, van der Wees J (2006) Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9(2):201–209

    PubMed  Google Scholar 

  • Badders NM, Goel S, Clark RJ, Klos KS, Kim S, Bafico A, Lindvall C, Williams BO, Alexander CM (2009) The Wnt receptor, Lrp5, is expressed by mouse mammary stem cells and is required to maintain the basal lineage. PLoS One 4(8), e6594

    PubMed Central  PubMed  Google Scholar 

  • Bafico A, Liu G, Goldin L, Harris V, Aaronson SA (2004) An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 6(5):497–506

    CAS  PubMed  Google Scholar 

  • Bleau A-M, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4(3):226–235

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    CAS  PubMed  Google Scholar 

  • Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat M-L, Oakes SR, Lindeman GJ, Visvader JE (2008) Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 3(4):429–441

    CAS  PubMed  Google Scholar 

  • Charafe-Jauffret E, Monville F, Ginestier C, Dontu G, Birnbaum D, Wicha MS (2008) Cancer stem cells in breast: current opinion and future challenges. Pathobiology 75(2):75–84

    PubMed Central  PubMed  Google Scholar 

  • Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur M-H, Diebel ME, Monville F, Dutcher J (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69(4):1302–1313

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chiba S (2006) Concise review: Notch signaling in stem cell systems. Stem Cells 24(11):2437–2447

    CAS  PubMed  Google Scholar 

  • Cho J-H, Dimri M, Dimri GP (2013) A positive feedback loop regulates the expression of polycomb group protein BMI1 via WNT signaling pathway. J Biol Chem 288(5):3406–3418

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B, Brisken C, Minucci S, Di Fiore PP, Pelicci PG (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138(6):1083–1095

    CAS  PubMed  Google Scholar 

  • Cohen MM (2003) The hedgehog signaling network. Am J Med Genet A 123(1):5–28

    Google Scholar 

  • Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, Clouthier SG, Wicha MS (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci 109(8):2784–2789

    PubMed Central  CAS  PubMed  Google Scholar 

  • DeAlmeida VI, Miao L, Ernst JA, Koeppen H, Polakis P, Rubinfeld B (2007) The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res 67(11):5371–5379

    CAS  PubMed  Google Scholar 

  • Demichele AM, Donelson M, Komrokian S, Colameco C, Chen J, Chen L, Gray R, Nnoli J, Vaughan W, Anderson K (2014) Associations between IL6 genotype and IL6-related tumor alterations in ER+ breast cancer: results from ECOG2190/Int0121. Cancer Res 74(19 Suppl):4719

    Google Scholar 

  • di Magliano MP, Hebrok M (2003) Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 3(12):903–911

    Google Scholar 

  • Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira S-M, García-Echeverría C, Schultz PG, Reddy VA (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci 106(1):268–273

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, Eaves CJ (2008) A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med 14(12):1384–1389

    CAS  PubMed  Google Scholar 

  • Farnie G, Willan PM, Clarke RB, Bundred NJ (2013) Combined inhibition of ErbB1/2 and Notch receptors effectively targets breast ductal carcinoma in situ (DCIS) stem/progenitor cell activity regardless of ErbB2 status. PLoS One 8(2), e56840

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fisman EZ, Tenenbaum A (2010) The ubiquitous interleukin-6: a time for reappraisal. Cardiovasc Diabetol 9(1):62

    PubMed Central  PubMed  Google Scholar 

  • Franke T (2008) PI3K/Akt: getting it right matters. Oncogene 27(50):6473–6488

    CAS  PubMed  Google Scholar 

  • Friedrichs K, Ruiz P, Franke F, Gille I, Terpe H-J, Imhof BA (1995) High expression level of α6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res 55(4):901–906

    CAS  PubMed  Google Scholar 

  • Fulciniti M, Hideshima T, Vermot-Desroches C, Pozzi S, Nanjappa P, Shen Z, Patel N, Smith ES, Wang W, Prabhala R (2009) A high-affinity fully human anti–IL6 mAb, 1339, for the treatment of multiple myeloma. Clin Cancer Res 15(23):7144–7152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120(2):485–497

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guo B, Feng Y, Zhang R, Xu L-H, Li M-Z, Kung H-F, Song L-B, Zeng M-S (2010) Bmi-1 promotes the invasion and metastasis and its elevated expression is correlated with advanced stage of breast cancer, Ph.D. thesis, Chinese University of Hong Kong

    Google Scholar 

  • Hadnagy A, Gaboury L, Beaulieu R, Balicki D (2006) SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 312(19):3701–3710

    CAS  PubMed  Google Scholar 

  • Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ, Clarke RB (2010) Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 70(2):709–718

    PubMed Central  CAS  PubMed  Google Scholar 

  • He B, You L, Uematsu K, Xu Z, Lee AY, Matsangou M, McCormick F, Jablons DM (2004) A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia 6(1):7–14

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heinrich P, Behrmann I, Muller-Newen G, Schaper F, Graeve L (1998) Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway1. Biochem J 334:297–314

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hennighausen L, Robinson GW (2005) Information networks in the mammary gland. Nat Rev Mol Cell Biol 6(9):715–725

    CAS  PubMed  Google Scholar 

  • Hermano E, Meirovitz A, Meir K, Nussbaum G, Appelbaum L, Peretz T, Elkin M (2014) Macrophage polarization in pancreatic carcinoma: role of heparanase enzyme. J Natl Cancer Inst 106(12):dju332

    PubMed  Google Scholar 

  • Hui M, Cazet A, Nair R, Watkins DN, O’Toole SA, Swarbrick A (2013) The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy. Breast Cancer Res 15(2):203

    PubMed Central  CAS  PubMed  Google Scholar 

  • Keller PJ, Arendt LM, Skibinski A, Logvinenko T, Klebba I, Dong S, Smith AE, Prat A, Perou CM, Gilmore H (2012) Defining the cellular precursors to human breast cancer. Proc Natl Acad Sci 109(8):2772–2777

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8(5):387–398

    CAS  PubMed  Google Scholar 

  • Klopocki E, Kristiansen G, Wild PJ, Klaman I, Castanos-Velez E, Singer G, Stöhr R, Simon R, Sauter G, Leibiger H, Essers L, Weber B, Hermann K, Rosenthal A, Hartmann A, Dahl E (2004) Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors. Int J Oncol 25:641–649

    CAS  PubMed  Google Scholar 

  • Kopper L, Hajdú M (2004) Tumor stem cells. Pathol Oncol Res 10(2):69–73

    PubMed  Google Scholar 

  • Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T, Cao L, Baiazitov R, Du W, Sydorenko N (2014) Self-renewal as a therapeutic target in human colorectal cancer. Nat Med 20(1):29–36

    CAS  PubMed  Google Scholar 

  • Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M, Kuroki S, Katano M (2004) Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64(17):6071–6074

    CAS  PubMed  Google Scholar 

  • Lawson ND, Vogel AM, Weinstein BM (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3(1):127–136

    CAS  PubMed  Google Scholar 

  • Lee G, Goretsky T, Managlia E, Dirisina R, Singh AP, Brown JB, May R, Yang GY, Ragheb JW, Evers BM (2010) Phosphoinositide 3-kinase signaling mediates β-catenin activation in intestinal epithelial stem and progenitor cells in colitis. Gastroenterology 139(3):869.e869–881.e869

    Google Scholar 

  • Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P, van Lohuizen M, Marino S (2004) Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428(6980):337–341

    CAS  PubMed  Google Scholar 

  • Lewis MT, Veltmaat JM (2004) Next stop, the twilight zone: hedgehog network regulation of mammary gland development. J Mammary Gland Biol Neoplasia 9(2):165–181

    PubMed  Google Scholar 

  • Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, Rowlands T, Egeblad M, Cowin P, Werb Z (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci 100(26):15853–15858

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Song F, Chen X, Li Y, Fan J, Wu X (2014) Bmi-1 regulates epithelial-to-mesenchymal transition to promote migration and invasion of breast cancer cells. Int J Clin Exp Pathol 7(6):3057

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat M-L, Gyorki DE, Ward T, Partanen A (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15(8):907–913

    CAS  PubMed  Google Scholar 

  • Lindsay J, Jiao X, Sakamaki T, Casimiro MC, Shirley LA, Tran TH, Ju X, Liu M, Li Z, Wang C (2008) ErbB2 induces Notch1 activity and function in breast cancer cells. Clin Transl Sci 1(2):107–115

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lipscomb EA, Simpson KJ, Lyle SR, Ring JE, Dugan AS, Mercurio AM (2005) The α6β4 integrin maintains the survival of human breast carcinoma cells in vivo. Cancer Res 65(23):10970–10976

    CAS  PubMed  Google Scholar 

  • Liu S, Wicha MS (2010) Targeting breast cancer stem cells. J Clin Oncol 28(25):4006–4012

    CAS  PubMed  Google Scholar 

  • Liu BY, McDermott SP, Khwaja SS, Alexander CM (2004) The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci 101(12):4158–4163

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu S, Dontu G, Mantle ID, Patel S, N-s A, Jackson KW, Suri P, Wicha MS (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66(12):6063–6071

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, Kleer CG (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71(2):614–624

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Liu F, Yu H, Zhao X, Sashida G, Deblasio A, Harr M, She Q-B, Chen Z, Lin H-K (2012) Akt phosphorylates the transcriptional repressor bmi1 to block its effects on the tumor-suppressing ink4a-arf locus. Sci Signal 5(247):ra77

    PubMed Central  PubMed  Google Scholar 

  • Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD (2014) Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep 2(1):78–91

    CAS  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    CAS  PubMed  Google Scholar 

  • López SL, Paganelli AR, Siri MVR, Ocaña OH, Franco PG, Carrasco AE (2003) Notch activates sonic hedgehog and both are involved in the specification of dorsal midline cell-fates in Xenopus. Development 130(10):2225–2238

    PubMed  Google Scholar 

  • Meyer MJ, Fleming JM, Lin AF, Hussnain SA, Ginsburg E, Vonderhaar BK (2010) CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor–negative breast cancer. Cancer Res 70(11):4624–4633

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nagahata T, Shimada T, Harada A, Nagai H, Onda M, Yokoyama S, Shiba T, Jin E, Kawanami O, Emi M (2003) Amplification, up‐regulation and over‐expression of DVL‐1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers. Cancer Sci 94(6):515–518

    CAS  PubMed  Google Scholar 

  • Nakopoulou L, Mylona E, Papadaki I, Kavantzas N, Giannopoulou I, Markaki S, Keramopoulos A (2006) Study of phospho-β-catenin subcellular distribution in invasive breast carcinomas in relation to their phenotype and the clinical outcome. Mod Pathol 19(4):556–563

    CAS  PubMed  Google Scholar 

  • Ohsugi Y, Kishimoto T (2008) The recombinant humanized anti-IL6 receptor antibody tocilizumab, an innovative drug for the treatment of rheumatoid arthritis. Expert Opin Biol Ther 8:669–681

    CAS  PubMed  Google Scholar 

  • Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–1461

    PubMed Central  CAS  PubMed  Google Scholar 

  • Olsauskas-Kuprys R, Zlobin A, Osipo C (2013) Gamma secretase inhibitors of Notch signaling. OncoTargets Ther 6:943

    CAS  Google Scholar 

  • Osipo C, Patel P, Rizzo P, Clementz A, Hao L, Golde T, Miele L (2008) ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a γ-secretase inhibitor. Oncogene 27(37):5019–5032

    CAS  PubMed  Google Scholar 

  • Ouzounova M, Kim G, Davis A, Quraishi AA, Tawakkol N, Kota S, Wicha MS, Korkaya H (2014) Inactivation of p53/PTEN confers a specific epigenetic profile regulated by IL6-SOCS3 signaling. Cancer Res 74(19 Suppl):3866

    Google Scholar 

  • Pabois A, Devallière J, Quillard T, Coulon F, Gérard N, Laboisse C, Toquet C, Charreau B (2014) The disintegrin and metalloproteinase ADAM10 mediates a canonical Notch-dependent regulation of IL6 through Dll4 in human endothelial cells. Biochem Pharmacol 91(4):510–521

    CAS  PubMed  Google Scholar 

  • Patel S, Bhambra U, Charalambous M, David R, Edwards R, Lightfoot T, Boobis A, Gooderham N (2014) Interleukin-6 mediated upregulation of CYP1B1 and CYP2E1 in colorectal cancer involves DNA methylation, miR27b and STAT3. Br J Cancer 111:2287–2296

    CAS  PubMed  Google Scholar 

  • Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140(1):62–73

    CAS  PubMed  Google Scholar 

  • Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3(10):756–767

    CAS  PubMed  Google Scholar 

  • Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65(18):8530–8537

    CAS  PubMed  Google Scholar 

  • Robarge KD, Brunton SA, Castanedo GM, Cui Y, Dina MS, Goldsmith R, Gould SE, Guichert O, Gunzner JL, Halladay J (2009) GDC-0449 – a potent inhibitor of the hedgehog pathway. Bioorg Med Chem Lett 19(19):5576–5581

    CAS  PubMed  Google Scholar 

  • Rose-John S, Scheller J, Elson G, Jones SA (2006) Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol 80(2):227–236

    CAS  PubMed  Google Scholar 

  • Roy M, Pear WS, Aster JC (2007) The multifaceted role of Notch in cancer. Curr Opin Genet Dev 17(1):52–59

    CAS  PubMed  Google Scholar 

  • Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, Ceccarelli C, Santini D, Paterini P, Marcu KB (2007) IL6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117(12):3988–4002

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scheller J, Rose-John S (2006) Interleukin-6 and its receptor: from bench to bedside. Med Microbiol Immunol 195(4):173–183

    CAS  PubMed  Google Scholar 

  • Sekine C, Nanki T, Yagita H (2014) Macrophage‐derived delta‐like protein 1 enhances interleukin‐6 and matrix metalloproteinase 3 production by fibroblast‐like synoviocytes in mice with collagen‐induced arthritis. Arthritis Rheum 66(10):2751–2761

    CAS  Google Scholar 

  • Sengupta A, Banerjee D, Chandra S, Banerji S, Ghosh R, Roy R, Banerjee S (2007) Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia 21(5):949–955

    CAS  PubMed  Google Scholar 

  • Serra V, Scaltriti M, Prudkin L, Eichhorn P, Ibrahim Y, Chandarlapaty S, Markman B, Rodriguez O, Guzman M, Rodriguez S (2011) PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene 30(22):2547–2557

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19(2):192–205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat M-L, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439(7072):84–88

    CAS  PubMed  Google Scholar 

  • Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11(3):259–273

    CAS  PubMed  Google Scholar 

  • Sleeman KE, Kendrick H, Ashworth A, Isacke CM, Smalley MJ (2005) CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 8(1):R7

    PubMed Central  PubMed  Google Scholar 

  • Smalley M, Ashworth A (2003) Stem cells and breast cancer: a field in transit. Nat Rev Cancer 3(11):832–844

    CAS  PubMed  Google Scholar 

  • Soriano JV, Uyttendaele H, Kitajewski J, Montesano R (2000) Expression of an activated Notch4 (int‐3) oncoprotein disrupts morphogenesis and induces an invasive phenotype in mammary epithelial cells in vitro. Int J Cancer 86(5):652–659

    CAS  PubMed  Google Scholar 

  • Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo W-L, Davies M, Carey M, Hu Z, Guan Y, Sahin A (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68(15):6084–6091

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stingl J, Eaves CJ, Kuusk U, Emerman J (1998) Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 63(4):201–213

    CAS  PubMed  Google Scholar 

  • Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439(7079):993–997

    CAS  PubMed  Google Scholar 

  • Tong Y-Q, Liu B, Zheng H-Y, He Y-J, Gu J, Li F, Li Y (2011) BMI-1 autoantibody as a new potential biomarker for cervical carcinoma. PLoS One 6(11), e27804

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tremblay MR, Nevalainen M, Nair SJ, Porter JR, Castro AC, Behnke ML, Yu L-C, Hagel M, White K, Faia K (2008) Semisynthetic cyclopamine analogues as potent and orally bioavailable hedgehog pathway antagonists. J Med Chem 51(21):6646–6649

    CAS  PubMed  Google Scholar 

  • Uyttendaele H, Soriano JV, Montesano R, Kitajewski J (1998) Notch4 and Wnt-1 proteins function to regulate branching morphogenesis of mammary epithelial cells in an opposing fashion. Dev Biol 196(2):204–217

    CAS  PubMed  Google Scholar 

  • Veeman MT, Axelrod JD, Moon RT (2003) A second canon: functions and mechanisms of β-catenin-independent Wnt signaling. Dev Cell 5(3):367–377

    CAS  PubMed  Google Scholar 

  • Villadsen R, Fridriksdottir AJ, Rønnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, Bissell MJ, Petersen OW (2007) Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 177(1):87–101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Visvader JE (2009) Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 23(22):2563–2577

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Zhe H, Ding Z, Gao P, Zhang N, Li G (2012) Cancer stem cell marker Bmi-1 expression is associated with basal-like phenotype and poor survival in breast cancer. World J Surg 36(5):1189–1194

    PubMed  Google Scholar 

  • Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea – a paradigm shift. Cancer Res 66(4):1883–1890

    CAS  PubMed  Google Scholar 

  • Won H-Y, Lee J-Y, Shin D-H, Park J-H, Nam J-S, Kim H-C, Kong G (2012) Loss of Mel-18 enhances breast cancer stem cell activity and tumorigenicity through activating Notch signaling mediated by the Wnt/TCF pathway. FASEB J 26(12):5002–5013

    CAS  PubMed  Google Scholar 

  • Yang ZQ, Liu G, Bollig‐Fischer A, Haddad R, Tarca AL, Ethier SP (2009) Methylation‐associated silencing of SFRP1 with an 8p11‐12 amplification inhibits canonical and non‐canonical WNT pathways in breast cancers. Int J Cancer 125(7):1613–1621

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang M-H, Hsu DS-S, Wang H-W, Wang H-J, Lan H-Y, Yang W-H, Huang C-H, Kao S-Y, Tzeng C-H, Tai S-K (2010) Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 12(10):982–992

    PubMed  Google Scholar 

  • Zang S, Chen F, Dai J, Guo D, Tse W, Qu X, Ma D, Ji C (2010) RNAi-mediated knockdown of Notch-1 leads to cell growth inhibition and enhanced chemosensitivity in human breast cancer. Oncol Rep 23(4):893

    CAS  PubMed  Google Scholar 

  • Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, Margolick JB, Liotta LA, Petricoin E, Zhang Y (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci 104(41):16158–16163

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suling Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deng, L., Xu, J., Wang, D., Liu, S. (2015). Self-Renewal Pathways in Mammary Stem Cells and Carcinogenesis. In: Babashah, S. (eds) Cancer Stem Cells: Emerging Concepts and Future Perspectives in Translational Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-21030-8_6

Download citation

Publish with us

Policies and ethics