Skip to main content
  • 1082 Accesses

Abstract

Metastasis is a multistep process that implies genetic modifications and is strongly influenced by the interactions between host and tumor cells, and by tumor microenvironment. Before tumor cells colonize distant organs, they can prepare foreign soil by remotely coordinating a “premetastatic niche” from the primary tumor. The premetastatic niche provides an array of cells, cytokines, growth factors, and adhesion molecules to support metastatic cells on their arrival and to guide metastases to specific organs. Factors secreted by tumor cells, such as VEGF, LOX, IL-6, IL-10, and exosomes, participate in the premetastatic niche formation. Also extracellular matrix (ECM) molecules, namely periostin, tenascin and osteopontin can supply the necessary resources for successful metastatic colonization. One of the key underlying hypotheses of the cancer stem cell (CSC) model proposes that CSCs are the basis of metastases. CSCs in situ may transform to metastatic stem cells (MetSCs) by epithelial-mesenchymal transition (EMT) and subsequently disseminate and form metastatic colonies. Alternatively, MetSCs may derive from disseminated tumor cells that reacquire the competence to initiate tumor growth after a period of indolence. CSCs exhibit properties that are beneficial to metastasize and adapt in the foreign microenvironment, such as mesenchymal characteristics, increased capacity for DNA repair, resistance to apoptosis and to antitumor therapy. Circulating tumor cells (CTCs) are linked to tumor progression in a variety of solid tumors. CTCs are therefore assumed as precursors of distant metastasis. Potentially, a fraction of CTCs have CSC activity; stem-like CTCs may be a critical subset of CTCs with the capacity to form distant metastases. Many therapeutic strategies against CSCs strategies have been investigated. Among them, therapies directed at CSC niche and pre-metastatic niche are of particular interest. These therapies are aimed at targeting vasculature, extrinsic signals and tumor associated macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG et al (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150(1):165–178

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S (2009) Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11(4):R46

    PubMed Central  PubMed  Google Scholar 

  • Allavena P, Signorelli M, Chieppa M, Erba E, Bianchi G, Marchesi F et al (2005) Anti-inflammatory properties of the novel anti-tumor agent yondelis (trabectedin): inhibition of macrophage differentiation and cytokine production. Cancer Res 65(7):2964–2971

    CAS  PubMed  Google Scholar 

  • Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66(1):1–9

    PubMed  Google Scholar 

  • Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A, Muschel RJ (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6(1):100–102

    CAS  PubMed  Google Scholar 

  • Andres JL, Rönnstrand L, Cheifetz S, Massagué J (1991) Purification of the transforming growth factor-beta (TGF-beta) binding proteoglycan betaglycan. J Biol Chem 266(34):23282–23287

    CAS  PubMed  Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279(5349):377–380

    CAS  PubMed  Google Scholar 

  • Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD et al (2011) Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res 9(8):997–1007

    PubMed Central  CAS  PubMed  Google Scholar 

  • Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER et al (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465(7299):798–802

    CAS  PubMed  Google Scholar 

  • Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X et al (2009) CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 113(18):4341–4351

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31(6):539–544

    CAS  PubMed  Google Scholar 

  • Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 2(19):5615–5621

    Google Scholar 

  • Bandyopadhyay S, Zhan R, Chaudhuri A, Watabe M, Pai SK, Hirota S et al (2006) Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12(8):933–938

    CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006a) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB et al (2006b) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–7848

    CAS  PubMed  Google Scholar 

  • Barkan D, Green JE, Chambers AF (2010) Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer 46(7):1181–1188

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barone A, Sengupta R, Warrington NM, Smith E, Wen PY, Brekken RA et al (2014) Combined VEGF and CXCR4 antagonism targets the GBM stem cell population and synergistically improves survival in an intracranial mouse model of glioblastoma. Oncotarget

    Google Scholar 

  • Barrière G, Riouallon A, Renaudie J, Tartary M, Rigaud M (2012) Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis. BMC Cancer 12:114

    PubMed Central  PubMed  Google Scholar 

  • Bautch VL (2011) Stem cells and the vasculature. Nat Med 17(11):1437–1443

    CAS  PubMed  Google Scholar 

  • Behrens J (1994–1995) Cell contacts, differentiation, and invasiveness of epithelial cells. Invasion Metastasis 14(1–6):61–70

    Google Scholar 

  • Beier D, Wischhusen J, Dietmaier W, Hau P, Proescholdt M, Brawanski A et al (2008) CD133 expression and cancer stem cells predict prognosis in high-grade oligodendroglial tumors. Brain Pathol 18(3):370–377

    PubMed  Google Scholar 

  • Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410

    CAS  PubMed  Google Scholar 

  • Biswas SK, Sica A, Lewis CE (2008) Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol 180(4):2011–2017

    CAS  PubMed  Google Scholar 

  • Blaheta RA, Michaelis M, Driever PH, Cinatl J Jr (2005) Evolving anticancer drug valproic acid: insights into the mechanism and clinical studies. Med Res Rev 25(4):383–397

    CAS  PubMed  Google Scholar 

  • Borovski T, Verhoeff JJ, Cate R, Cameron K, de Vries NA, van Tellingen O et al (2009) Tumor microvasculature supports proliferation and expansion of glioma-propagating cells. Int J Cancer 125(5):1222–1230

    CAS  PubMed  Google Scholar 

  • Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF et al (1991) Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251(4995):802–804

    CAS  PubMed  Google Scholar 

  • Brabletz T (2012) To differentiate or not–routes towards metastasis. Nat Rev Cancer 12(6):425–436

    CAS  PubMed  Google Scholar 

  • Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005) Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat Rev Cancer 5(9):744–749

    CAS  PubMed  Google Scholar 

  • Burnett AK, Hills RK, Green C, Jenkinson S, Koo K, Patel Y et al (2010) The impact on outcome of the addition of all-trans retinoic acid to intensive chemotherapy in younger patients with nonacute promyelocytic acute myeloid leukemia: overall results and results in genotypic subgroups defined by mutations in NPM1, FLT3, and CEBPA. Blood 115(5):948–956

    CAS  PubMed  Google Scholar 

  • Butler JM, Kobayashi H, Rafii S (2010) Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 10(2):138–146

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cairns J (2002) Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc Natl Acad Sci U S A 99(16):10567–10570

    PubMed Central  CAS  PubMed  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82

    CAS  PubMed  Google Scholar 

  • Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Céspedes MV et al (2012) Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22(5):571–584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cameron MD, Schmidt EE, Kerkvliet N, Nadkarni KV, Morris VL, Groom AC et al (2000) Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60(9):2541–2546

    CAS  PubMed  Google Scholar 

  • Carbonell WS, Ansorge O, Sibson N, Muschel R (2009) The vascular basement membrane as “soil” in brain metastasis. PLoS One 4(6), e5857

    PubMed Central  PubMed  Google Scholar 

  • Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4(2):118–132

    CAS  PubMed  Google Scholar 

  • Chaffer CL, Dopheide B, McCulloch DR, Lee AB, Moseley JM, Thompson EW et al (2005) Upregulated MT1-MMP/TIMP-2 axis in the TSU-Pr1-B1/B2 model of metastatic progression in transitional cell carcinoma of the bladder. Clin Exp Metastasis 22(2):115–125

    CAS  PubMed  Google Scholar 

  • Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED (2006) Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66(23):11271–11278

    CAS  PubMed  Google Scholar 

  • Chaffer CL, Thompson EW, Williams ED (2007) Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs 185(1-3):7–19

    PubMed  Google Scholar 

  • Chakrabarty S, Fan D, Varani J (1990) Modulation of differentiation and proliferation in human colon carcinoma cells by transforming growth factor beta 1 and beta 2. Int J Cancer 46(3):493–499

    CAS  PubMed  Google Scholar 

  • Chakraborty G, Jain S, Kundu GC (2008) Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res 68(1):152–161

    CAS  PubMed  Google Scholar 

  • Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572

    CAS  PubMed  Google Scholar 

  • Chao YL, Shepard CR, Wells A (2010) Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 9:179

    PubMed Central  PubMed  Google Scholar 

  • Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B et al (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16(1):45–55

    PubMed Central  CAS  PubMed  Google Scholar 

  • Charles N, Holland EC (2010) The perivascular niche microenvironment in brain tumor progression. Cell Cycle 9(15):3012–3021 (B)

    Google Scholar 

  • Charles N, Ozawa T, Squatrito M, Bleau AM, Brennan CW, Hambardzumyan D et al (2010) Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6(2):141–152

    CAS  PubMed  Google Scholar 

  • Chauhan P, Sodhi A, Shrivastava A (2009) Cisplatin primes murine peritoneal macrophages for enhanced expression of nitric oxide, proinflammatory cytokines, TLRs, transcription factors and activation of MAP kinases upon co-incubation with L929 cells. Immunobiology 214:197–209

    CAS  PubMed  Google Scholar 

  • Chen Q, Zhang XH, Massagué J (2011) Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20(4):538–549

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng F, Wang HW, Cuenca A, Huang M, Ghansah T, Brayer J et al (2003) A critical role for Stat3 signaling in immune tolerance. Immunity 19(3):425–436

    CAS  PubMed  Google Scholar 

  • Chiang AC, Massagué J (2008) Molecular basis of metastasis. N Engl J Med 359(26):2814–2823

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127(3):469–480

    CAS  PubMed  Google Scholar 

  • Clevers H (2013) The intestinal crypt, a prototype stem cell compartment. Cell 154(2):274–284

    CAS  PubMed  Google Scholar 

  • Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY et al (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 26(19):3213–3221

    PubMed  Google Scholar 

  • Cojoc M, Peitzsch C, Trautmann F, Polishchuk L, Telegeev GD, Dubrovska A (2013) Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets Ther 6:1347–1361

    PubMed Central  CAS  PubMed  Google Scholar 

  • Comen E, Norton L (2012) Self-seeding in cancer. Recent Results Cancer Res 195:13–23

    PubMed  Google Scholar 

  • Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3(12):921–930

    CAS  PubMed  Google Scholar 

  • Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN et al (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A 109(8):2784–2789

    PubMed Central  CAS  PubMed  Google Scholar 

  • Conticello C, Pedini F, Zeuner A, Patti M, Zerilli M, Stassi G et al (2004) IL-4 protects tumor cells from anti-CD95 and chemotherapeutic agents via up-regulation of antiapoptotic proteins. J Immunol 172(9):5467–5477

    CAS  PubMed  Google Scholar 

  • Coscia M, Quaglino E, Iezzi M, Curcio C, Pantaleoni F, Riganti C et al (2010) Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J Cell Mol Med 14(12):2803–2815

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coward J, Kulbe H, Chakravarty P, Leader D, Vassileva V, Leinster DA et al (2011) Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res 17(18):6083–6096

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112(5):645–657

    PubMed Central  CAS  PubMed  Google Scholar 

  • Criscuoli ML, Nguyen M, Eliceiri BP (2005) Tumor metastasis but not tumor growth is dependent on Src-mediated vascular permeability. Blood 105:1508

    CAS  PubMed  Google Scholar 

  • Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791

    CAS  PubMed  Google Scholar 

  • Cristofanilli M, Hayes DF, Budd GT, Ellis MJ, Stopeck A, Reuben JM et al (2005) Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol 23(7):1420–1430

    PubMed  Google Scholar 

  • Croker AK, Allan AL (2012) Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells. Breast Cancer Res Treat 133(1):75–87

    CAS  PubMed  Google Scholar 

  • Crowley NJ, Seigler HF (1992) Relationship between disease-free interval and survival in patients with recurrent melanoma. Arch Surg 127(11):1303–1308

    CAS  PubMed  Google Scholar 

  • D’Alterio C, Barbieri A, Portella L, Palma G, Polimeno M, Riccio A et al (2012) Inhibition of stromal CXCR4 impairs development of lung metastases. Cancer Immunol Immunother 61(10):1713–1720

    PubMed Central  PubMed  Google Scholar 

  • D’Andrea FP (2012) Intrinsic radiation resistance of mesenchymal cancer stem cells and implications for treatment response in a murine sarcoma model. Dan Med J 59(2):B4388

    PubMed  Google Scholar 

  • Dameron KM, Volpert OV, Tainsky MA, Bouck N (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265(5178):1582–1584

    CAS  PubMed  Google Scholar 

  • Damonte P, Gregg JP, Borowsky AD, Keister BA, Cardiff RD (2007) EMT tumorigenesis in the mouse mammary gland. Lab Invest 87(12):1218–1226

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM et al (2009) Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J 28(4):347–358

    PubMed Central  CAS  PubMed  Google Scholar 

  • Danila DC, Heller G, Gignac GA, Gonzalez-Espinoza R, Anand A, Tanaka E et al (2007) Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res 13(23):7053–7058

    CAS  PubMed  Google Scholar 

  • Dannenberg AJ, Subbaramaiah K (2003) Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell 4(6):431–436

    CAS  PubMed  Google Scholar 

  • De Nigris F, Schiano C, Infante T, Napoli C (2012) CXCR4 inhibitors: tumor vasculature and therapeutic challenges. Recent Pat Anticancer Drug Discov 7(3):251–264

    PubMed  Google Scholar 

  • de Sousa EM, Vermeulen L, Richel D, Medema JP (2011) Targeting Wnt signaling in colon cancer stem cells. Clin Cancer Res 17(4):647–653

    PubMed  Google Scholar 

  • Dean M (2009) ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 14(1):3–9

    PubMed  Google Scholar 

  • Debeb BG, Xu W, Woodward WA (2009) Radiation resistance of breast cancer stem cells: understanding the clinical framework. J Mammary Gland Biol Neoplasia 14(1):11–17

    PubMed  Google Scholar 

  • Demicheli R, Abbattista A, Miceli R, Valagussa P, Bonadonna G (1996) Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: further support about the concept of tumor dormancy. Breast Cancer Res Treat 41(2):177–185

    CAS  PubMed  Google Scholar 

  • Deng J, Liu Y, Lee H, Herrmann A, Zhang W, Zhang C et al (2012) S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 21(5):642–654

    PubMed Central  CAS  PubMed  Google Scholar 

  • Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dieter SM, Ball CR, Hoffmann CM, Nowrouzi A, Herbst F, Zavidij O et al (2011) Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 9(4):357–365

    CAS  PubMed  Google Scholar 

  • Dineen SP, Lynn KD, Holloway SE, Miller AF, Sullivan JP, Shames DS et al (2008) Vascular endothelial growth factor receptor 2 mediates macrophage infiltration into orthotopic pancreatic tumors in mice. Cancer Res 68(11):4340–4346

    CAS  PubMed  Google Scholar 

  • Ding XW, Wu JH, Jiang CP (2010) ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci 86(17-18):631–637

    CAS  PubMed  Google Scholar 

  • Doberstein K, Wieland A, Lee SB, Blaheta RA, Wedel S, Moch H et al (2011) L1-CAM expression in ccRCC correlates with shorter patients survival times and confers chemoresistance in renal cell carcinoma cells. Carcinogenesis 32(3):262–270

    CAS  PubMed  Google Scholar 

  • Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG et al (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70(19):7465–7475

    PubMed Central  CAS  PubMed  Google Scholar 

  • Domanska UM, Timmer-Bosscha H, Nagengast WB, Oude Munnink TH, Kruizinga RC, Ananias HJ et al (2012) CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy. Neoplasia 14(8):709–718

    PubMed Central  CAS  PubMed  Google Scholar 

  • Donnenberg VS, Meyer EM, Donnenberg AD (2009) Measurement of multiple drug resistance transporter activity in putative cancer stem/progenitor cells. Methods Mol Biol 568:261–279

    PubMed Central  CAS  PubMed  Google Scholar 

  • Draffin JE, McFarlane S, Hill A, Johnston PG, Waugh DJ (2004) CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 64:5702–5711

    CAS  PubMed  Google Scholar 

  • Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E et al (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 3(3):206–220

    Google Scholar 

  • Dubrovska A, Elliott J, Salamone RJ, Kim S, Aimone LJ, Walker JR et al (2010) Combination therapy targeting both tumor-initiating and differentiated cell populations in prostate carcinoma. Clin Cancer Res 16(23):5692–56702

    CAS  PubMed  Google Scholar 

  • Dubrovska A, Hartung A, Bouchez LC, Walker JR, Reddy VA, Cho CY et al (2012) CXCR4 activation maintains a stem cell population in tamoxifen-resistant breast cancer cells through AhR signalling. Br J Cancer 107(1):43–52

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C et al (2005) Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6(3):314–322

    CAS  PubMed  Google Scholar 

  • Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6(11):836–848

    CAS  PubMed  Google Scholar 

  • Dvorak HF, Senger DR, Dvorak AM (1983) Fibrin as a component of the tumor stroma: origins and biological significance. Cancer Metastasis Rev 2(1):41–73

    CAS  PubMed  Google Scholar 

  • Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    PubMed Central  CAS  PubMed  Google Scholar 

  • Edwards JP, Emens LA (2010) The multikinase inhibitor sorafenib reverses the suppression of IL-12 and enhancement of IL-10 by PGE2 in murine macrophages. Int Immunopharmacol 10:1220–1228

    PubMed Central  CAS  PubMed  Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174

    CAS  PubMed  Google Scholar 

  • el-Sabban ME, Pauli BU (1994–1995) Adhesion-mediated gap junctional communication between lung-metastatic cancer cells and endothelium. Invasion Metastasis 14(1–6):164–176

    Google Scholar 

  • Erler JT, Cawthorne CJ, Williams KJ, Koritzinsky M, Wouters BG, Wilson C et al (2004) Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol 24(7):2875–2889

    PubMed Central  CAS  PubMed  Google Scholar 

  • Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15(1):35–44

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fang HY, Hughes R, Murdoch C, Coffelt SB, Biswas SK, Harris AL et al (2009) Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 114(4):844–859

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fehm T, Sagalowsky A, Clifford E, Beitsch P, Saboorian H, Euhus D et al (2002) Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant. Clin Cancer Res 8(7):2073–2084

    CAS  PubMed  Google Scholar 

  • Fehm T, Hoffmann O, Aktas B, Becker S, Solomayer EF, Wallwiener D et al (2009) Detection and characterization of circulating tumor cells in blood of primary breast cancer patients by RT-PCR and comparison to status of bone marrow disseminated cells. Breast Cancer Res 11(4):R59

    PubMed Central  PubMed  Google Scholar 

  • Fehm T, Müller V, Aktas B, Janni W, Schneeweiss A, Stickeler E et al (2010) HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial. Breast Cancer Res Treat 124(2):403–412

    CAS  PubMed  Google Scholar 

  • Felding-Habermann B, O’Toole TE, Smith JW, Fransvea E, Ruggeri ZM, Ginsberg MH et al (2001) Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci U S A 98(4):1853–1858

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feldmann G, Fendrich V, McGovern K, Bedja D, Bisht S, Alvarez H et al (2008) An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol Cancer Ther 7:2725–2735

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ferrari P, Nicolini A (2012) Breast cancer stem cells: new therapeutic approaches. Breast Cancer Manag 1(4):277–294

    CAS  Google Scholar 

  • Ferrari P, Nicolini A, Carpi A (2013) Targeted therapies of metastatic breast cancer: relationships with cancer stem cells. Biomed Pharmacother 67(6):543–555

    CAS  PubMed  Google Scholar 

  • Fidler IJ (2001) Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surg Oncol Clin N Am 10(2):257–269

    CAS  PubMed  Google Scholar 

  • Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    CAS  PubMed  Google Scholar 

  • Floor S, van Staveren WC, Larsimont D, Dumont JE, Maenhaut C (2011) Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating-cancer stem cells: distinct, overlapping or same populations. Oncogene 30(46):4609–4621

    CAS  PubMed  Google Scholar 

  • Fodde R, Brabletz T (2007) Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 19(2):150–158

    CAS  PubMed  Google Scholar 

  • Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS (2007) Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67:3560–3564

    CAS  PubMed  Google Scholar 

  • Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3(5):362–374

    CAS  PubMed  Google Scholar 

  • Friedrichs K, Franke F, Lisboa BW, Kügler G, Gille I, Terpe HJ et al (1995) CD44 isoforms correlate with cellular differentiation but not with prognosis in human breast cancer. Cancer Res 55(22):5424–5433

    CAS  PubMed  Google Scholar 

  • Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13(5):555–562

    CAS  PubMed  Google Scholar 

  • Galsky MD, Vogelzang NJ, Conkling P, Raddad E, Polzer J, Roberson S et al (2014) A phase I trial of LY2510924, a CXCR4 peptide antagonist, in patients with advanced cancer. Clin Cancer Res 20(13):3581–3588

    CAS  PubMed  Google Scholar 

  • Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V (2008) Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319(5860):195–198

    CAS  PubMed  Google Scholar 

  • Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A et al (2012) The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 150(4):764–779

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia A, Kandel JJ (2012) Notch: a key regulator of tumor angiogenesis and metastasis. Histol Histopathol 27(2):151–156

    PubMed Central  PubMed  Google Scholar 

  • Gasic GJ (1984) Role of plasma, platelets, and endothelial cells in tumor metastasis. Cancer Metastasis Rev 3(2):99–114

    CAS  PubMed  Google Scholar 

  • Gassenmaier M, Chen D, Buchner A, Henkel L, Schiemann M, Mack B et al (2013) CXC chemokine receptor 4 is essential for maintenance of renal cell carcinoma-initiating cells and predicts metastasis. Stem Cells 31(8):1467–1476

    CAS  PubMed  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899

    CAS  PubMed  Google Scholar 

  • Germano G, Frapolli R, Simone M, Tavecchio M, Erba E, Pesce S et al (2010) Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells. Cancer Res 70(6):2235–2244

    CAS  PubMed  Google Scholar 

  • Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H et al (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15(7):807–817

    CAS  PubMed  Google Scholar 

  • Giaccia AJ, Erler JT (2008) The cellular microenvironment and metastases. In: Abeloff MD, Armitage JO, Niederhuber JE, Kastan MB, McKenna WG (eds) Clinical oncology, 4th edn. Churchill Livingstone-Elsevier, Philadelphia, pp 1177–1228 (Chapter 3)

    Google Scholar 

  • Giancotti FG (2013) Mechanisms governing metastatic dormancy and reactivation. Cell 155(4):750–764

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gil M, Komorowski MP, Seshadri M, Rokita H, McGray AJ, Opyrchal M et al (2014) CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J Immunol

    Google Scholar 

  • Gil-Bernabé AM, Ferjancic S, Tlalka M, Zhao L, Allen PD, Im JH et al (2012) Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119(13):3164–3175

    PubMed  Google Scholar 

  • Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M et al (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120(2):485–497

    PubMed Central  CAS  PubMed  Google Scholar 

  • Giordano A, Gao H, Anfossi S, Cohen E, Mego M, Lee BN et al (2012) Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer. Mol Cancer Ther 11(11):2526–2534

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goodison S, Kawai K, Hihara J, Jiang P, Yang M, Urquidi V et al (2003) Prolonged dormancy and site-specific growth potential of cancer cells spontaneously disseminated from nonmetastatic breast tumors as revealed by labeling with green fluorescent protein. Clin Cancer Res 9(10, Pt 1):3808–3814

    Google Scholar 

  • Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379(6560):88–91

    CAS  PubMed  Google Scholar 

  • Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC et al (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71(15):5346–5356

    CAS  PubMed  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601

    CAS  PubMed  Google Scholar 

  • Gross ME, Zorbas MA, Danels YJ, Garcia R, Gallick GE, Olive M et al (1991) Cellular growth response to epidermal growth factor in colon carcinoma cells with an amplified epidermal growth factor receptor derived from a familial adenomatous polyposis patient. Cancer Res 51(5):1452–1459

    CAS  PubMed  Google Scholar 

  • Guo W, Giancotti FG (2004) Integrin signalling during tumor progression. Nat Rev Mol Cell Biol 5:816

    CAS  PubMed  Google Scholar 

  • Guo C, Sah JF, Beard L, Willson JK, Markowitz SD, Guda K (2008) The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer 47(11):939–946

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    CAS  PubMed  Google Scholar 

  • Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening 1. Cell 138:645–659

    CAS  PubMed  Google Scholar 

  • Hambardzumyan D, Becher OJ, Holland EC (2008) Cancer stem cells and survival pathways. Cell Cycle 7(10):1371–1378

    CAS  PubMed  Google Scholar 

  • Hanada T, Nakagawa M, Emoto A, Nomura T, Nasu N, Nomura Y (2000) Prognostic value of tumor-associated macrophage count in human bladder cancer. Int J Urol 7:263–269

    CAS  PubMed  Google Scholar 

  • Havens AM, Pedersen EA, Shiozawa Y, Ying C, Jung Y, Sun Y et al (2008) An in vivo mouse model for human prostate cancer metastasis. Neoplasia 10(4):371–380

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8(20):3274–3284

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323

    CAS  PubMed  Google Scholar 

  • Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R et al (2006) Metastatic patterns in adenocarcinoma. Cancer 106(7):1624–1633

    PubMed  Google Scholar 

  • Hill RP, Marie-Egyptienne DT, Hedley DW (2009) Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol 19:106–111

    PubMed  Google Scholar 

  • Hiraoka K, Zenmyo M, Watari K, Iguchi H, Fotovati A, Kimura YN et al (2008) Inhibition of bone and muscle metastases of lung cancer cells by a decrease in the number of monocytes/macrophages. Cancer Sci 99(8):1595–1602

    CAS  PubMed  Google Scholar 

  • Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H et al (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2(4):289–300

    CAS  PubMed  Google Scholar 

  • Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8(12):1369–1375

    CAS  PubMed  Google Scholar 

  • Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K et al (2008) The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10(11):1349–1355

    CAS  PubMed  Google Scholar 

  • Hoey T, Yen WC, Axelrod F, Basi J, Donigian L, Dylla S et al (2009) DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5:168–177

    CAS  PubMed  Google Scholar 

  • Hoffman PC, Mauer AM, Vokes EE (2000) Lung cancer. Lancet 355:479–485

    CAS  PubMed  Google Scholar 

  • Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1:149–153

    CAS  PubMed  Google Scholar 

  • Hood JL, San RS, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71:3792–3801

    CAS  PubMed  Google Scholar 

  • Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5(7):738–743

    CAS  PubMed  Google Scholar 

  • Horst D, Kriegl L, Engel J, Kirchner T, Jung A (2009) Prognostic significance of the cancer stem cell markers CD133, CD44, and CD166 in colorectal cancer. Cancer Invest 27(8):844–850

    PubMed  Google Scholar 

  • Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der Heijden M, Moayedpardazi H et al (2010) Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 28(6):1019–1029

    CAS  PubMed  Google Scholar 

  • Hsu YC, Fuchs E (2012) A family business: stem cell progeny join the niche to regulate homeostasis. Nat Rev Mol Cell Biol 13(2):103–114

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED et al (2007) Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 213(2):374–383

    CAS  PubMed  Google Scholar 

  • Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706

    PubMed Central  CAS  PubMed  Google Scholar 

  • Imai T, Horiuchi A, Shiozawa T, Osada R, Kikuchi N, Ohira S et al (2004) Elevated expression of E-cadherin and alpha-, beta-, and gamma-catenins in metastatic lesions compared with primary epithelial ovarian carcinomas. Hum Pathol 35(12):1469–1476

    CAS  PubMed  Google Scholar 

  • Imtiyaz HZ, Williams EP, Hickey MM, Patel SA, Durham AC, Yuan LJ et al (2010) Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. J Clin Invest 120(8):2699–2714

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ishikawa T, Nakashiro K, Klosek SK, Goda H, Hara S, Uchida D et al (2009) Hypoxia enhances CXCR4 expression by activating HIF-1 in oral squamous cell carcinoma. Oncol Rep 21(3):707–712

    CAS  PubMed  Google Scholar 

  • Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174

    PubMed  Google Scholar 

  • Jin L, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L et al (2009) Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 5:31–42

    CAS  PubMed  Google Scholar 

  • Jin G, Kawsar HI, Hirsch SA, Zeng C, Jia X, Feng Z et al (2010) An antimicrobial peptide regulates tumor-associated macrophage trafficking via the chemokine receptor CCR2, a model for tumorigenesis. PLoS One 5(6), e10993

    PubMed Central  PubMed  Google Scholar 

  • Jordan NV, Johnson GL, Abell AN (2011) Tracking the intermediate stages of epithelial-mesenchymal transition in epithelial stem cells and cancer. Cell Cycle 10(17):2865–2873

    PubMed Central  CAS  PubMed  Google Scholar 

  • Joseph J, Shiozawa Y, Jung Y, Kim JK, Pedersen E, Mishra A et al (2012) Disseminated prostate cancer cells can instruct hematopoietic stem and progenitor cells to regulate bone phenotype. Mol Cancer Res 10:282–292

    PubMed Central  CAS  PubMed  Google Scholar 

  • Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL et al (2010) Progesterone induces adult mammary stem cell expansion. Nature 465(7299):803–807

    CAS  PubMed  Google Scholar 

  • Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jung MJ, Rho JK, Kim YM, Jung JE, Jin YB, Ko YG et al (2013) Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells. Oncogene 32(2):209–221

    CAS  PubMed  Google Scholar 

  • Kajiyama H, Shibata K, Terauchi M, Ino K, Nawa A, Kikkawa F (2008) Involvement of SDF-1alpha/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma. Int J Cancer 122(1):91–99

    CAS  PubMed  Google Scholar 

  • Kalikin LM, Schneider A, Thakur MA, Fridman Y, Griffin LB, Dunn RL et al (2003) In vivo visualization of metastatic prostate cancer and quantitation of disease progression in immunocompromised mice. Cancer Biol Ther 2(6):656–660

    PubMed  Google Scholar 

  • Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V, Agelaki S (2011) Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res 13(3):R59

    PubMed Central  PubMed  Google Scholar 

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549

    CAS  PubMed  Google Scholar 

  • Kantara C, O’Connell MR, Luthra G, Gajjar A, Sarkar S, Ullrich RL et al (2015) Methods for detecting circulating cancer stem cells (CCSCs) as a novel approach for diagnosis of colon cancer relapse/metastasis. Lab Invest 95:100–112

    Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66(23):11089–11093

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaplan RN, Psaila B, Lyden D (2007) Niche-to-niche migration of bone-marrow-derived cells. Trends Mol Med 13(2):72–81

    CAS  PubMed  Google Scholar 

  • Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441(7092):431–436

    CAS  PubMed  Google Scholar 

  • Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563

    CAS  PubMed  Google Scholar 

  • Karpatkin S, Pearlstein E (1981) Role of platelets in tumor cell metastases. Ann Intern Med 95(5):636–641

    CAS  PubMed  Google Scholar 

  • Karpatkin S, Pearlstein E, Ambrogio C, Coller BS (1988) Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 81(4):1012–1019

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kasimir-Bauer S, Hoffmann O, Wallwiener D, Kimmig R, Fehm T (2012) Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Res 14(1):R15

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khatib AM, Auguste P, Fallavollita L, Wang N, Samani A, Kontogiannea M et al (2005) Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. Am J Pathol 167(3):749–759

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122

    CAS  PubMed  Google Scholar 

  • Kii I, Nishiyama T, Li M, Matsumoto K, Saito M, Amizuka N et al (2010) Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J Biol Chem 285(3):2028–2039

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim YJ, Borsig L, Varki NM, Varki A (1998) P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci U S A 95(16):9325–9330

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L et al (2009) Tumor self-seeding by circulating cancer cells. Cell 139(7):1315–1326

    PubMed Central  PubMed  Google Scholar 

  • Kim M, Koh YJ, Kim KE, Koh BI, Nam DH, Alitalo K et al (2010) CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res 70(24):10411–10421

    CAS  PubMed  Google Scholar 

  • Kim E, Kim M, Woo DH, Shin Y, Shin J, Chang N et al (2013) Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23(6):839–852

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120(3):694–705

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9(4):302–312

    CAS  PubMed  Google Scholar 

  • Klein CA (2011) Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev 21(1):42–49

    CAS  PubMed  Google Scholar 

  • Knowles HJ, Harris AL (2001) Hypoxia and oxidative stress in breast cancer. Hypoxia and tumourigenesis. Breast Cancer Res 3(5):318–322

    PubMed Central  CAS  PubMed  Google Scholar 

  • Knowles H, Leek R, Harris AL (2004) Macrophage infiltration and angiogenesis in human malignancy. Novartis Found Symp 256:189–200

    CAS  PubMed  Google Scholar 

  • Kobayashi CI, Suda T (2012) Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol 227(2):421–430

    CAS  PubMed  Google Scholar 

  • Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S et al (2011) Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med 208(13):2641–2655

    PubMed Central  CAS  PubMed  Google Scholar 

  • Korkaya H, Liu S, Wicha MS (2011) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 121(10):3804–3809

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kowalski PJ, Rubin MA, Kleer CG (2003) E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res 5(6):R217–R222

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krantz SB, Shields MA, Dangi-Garimella S, Munshi HG, Bentrem DJ (2012) Contribution of epithelial-to-mesenchymal transition and cancer stem cells to pancreatic cancer progression. J Surg Res 173(1):105–112

    PubMed Central  PubMed  Google Scholar 

  • Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M et al (2009) MCSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med 206:1089–1102

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F et al (2011) Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res 167(2):e211–e219

    PubMed  Google Scholar 

  • Kurahara H, Takao S, Kuwahata T, Nagai T, Ding Q, Maeda K et al (2012) Clinical significance of folate receptor β-expressing tumor-associated macrophages in pancreatic cancer. Ann Surg Oncol 19(7):2264–2271

    PubMed  Google Scholar 

  • Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20(5):576–590

    PubMed Central  CAS  PubMed  Google Scholar 

  • Larson CJ, Moreno JG, Pienta KJ, Gross S, Repollet M, O’hara SM et al (2004) Apoptosis of circulating tumor cells in prostate cancer patients. Cytometry A 62(1):46–53

    PubMed  Google Scholar 

  • Le QT, Denko NC, Giaccia AJ (2004) Hypoxic gene expression and metastasis. Cancer Metastasis Rev 23(3-4):293–310

    CAS  PubMed  Google Scholar 

  • Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172(7):973–981

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee TK, Cheung VC, Ng IO (2013) Liver tumor-initiating cells as a therapeutic target for hepatocellular carcinoma. Cancer Lett 338:101–109

    CAS  PubMed  Google Scholar 

  • Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935):1306–1309

    CAS  PubMed  Google Scholar 

  • Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    CAS  PubMed  Google Scholar 

  • Li Z, Rich JN (2010) Hypoxia and hypoxia inducible factors in cancer stem cell maintenance. Curr Top Microbiol Immunol 345:21–30

    CAS  PubMed  Google Scholar 

  • Li HJ, Reinhardt F, Herschman HR, Weinberg RA (2012) Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov 2(9):840–855

    CAS  PubMed  Google Scholar 

  • Liang W, Kujawski M, Wu J, Lu J, Herrmann A, Loera S et al (2010) Antitumor activity of targeting SRC kinases in endothelial and myeloid cell compartments of the tumor microenvironment. Clin Cancer Res 16(3):924–935

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lianidou ES, Mavroudis D, Georgoulias V (2013) Clinical challenges in the molecular characterization of circulating tumour cells in breast cancer. Br J Cancer 108(12):2426–2432

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H et al (2011) Krüppel-like factor 4 regulates macrophage polarization. J Clin Invest 121(7):2736–2749

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu H, Patel MR, Prescher JA, Patsialou A, Qian D, Lin J et al (2010) Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A 107(42):18115–18120

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al (2011a) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211–215

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F et al (2011b) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71(2):614–624

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lonardo E, Hermann PC, Mueller MT, Huber S, Balic A, Miranda-Lorenzo I et al (2011) Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell 9(5):433–446

    CAS  PubMed  Google Scholar 

  • Lou H, Dean M (2007) Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene 26(9):1357–1360

    CAS  PubMed  Google Scholar 

  • Louissaint A Jr, Rao S, Leventhal C, Goldman SA (2002) Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34(6):945–960

    CAS  PubMed  Google Scholar 

  • Lowes LE, Hedley BD, Keeney M, Allan AL (2012) User-defined protein marker assay development for characterization of circulating tumor cells using the Cell Search® system. Cytometry A 81(11):983–995

    PubMed  Google Scholar 

  • Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M et al (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 20(6):701–714

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF et al (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153(3):865–873

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma J, Lin JY, Alloo A, Wilson BJ, Schatton T, Zhan Q et al (2010) Isolation of tumorigenic circulating melanoma cells. Biochem Biophys Res Commun 402(4):711–717

    PubMed Central  CAS  PubMed  Google Scholar 

  • Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF et al (2011) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481(7379):85–89

    PubMed  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    PubMed Central  CAS  PubMed  Google Scholar 

  • Manthey CL, Johnson DL, Illig CR, Tuman RW, Zhou Z, Baker JF et al (2009) JNJ-28312141, a novel orally active colony-stimulating factor-1 receptor/FMS-related receptor tyrosine kinase-3 receptor tyrosine kinase inhibitor with potential utility in solid tumors, bone metastases, and acute myeloid leukemia. Mol Cancer Ther 8(11):3151–3161

    CAS  PubMed  Google Scholar 

  • Martin SS, Ridgeway AG, Pinkas J, Lu Y, Reginato MJ, Koh EY et al (2004) A cytoskeleton-based functional genetic screen identifies Bcl-xL as an enhancer of metastasis, but not primary tumor growth. Oncogene 23(26):4641–4645

    CAS  PubMed  Google Scholar 

  • Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C et al (2010) Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 2:317–326

    Google Scholar 

  • Massard C, Deutsch E, Soria JC (2006) Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol 17:1620–1624

    CAS  PubMed  Google Scholar 

  • Masson V, de la Ballina LR, Munaut C, Wielockx B, Jost M, Maillard C et al (2005) Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes. FASEB J 19(2):234–236

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matsusue R, Kubo H, Hisamori S, Okoshi K, Takagi H, Hida K et al (2009) Hepatic stellate cells promote liver metastasis of colon cancer cells by the action of SDF-1/CXCR4 axis. Ann Surg Oncol 16(9):2645–2653

    PubMed  Google Scholar 

  • McGowan PM, Simedrea C, Ribot EJ, Foster PJ, Palmieri D, Steeg PS et al (2011) Notch1 inhibition alters the CD44hi/CD24lo population and reduces the formation of brain metastases from breast cancer. Mol Cancer Res 9:834–844

    PubMed Central  CAS  PubMed  Google Scholar 

  • Medema JP, Vermeulen L (2011) Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 474(7351):318–326

    CAS  PubMed  Google Scholar 

  • Mego M, Mani SA, Lee BN, Li C, Evans KW, Cohen EN et al (2012a) Expression of epithelial-mesenchymal transition-inducing transcription factors in primary breast cancer: The effect of neoadjuvant therapy. Int J Cancer 130(4):808–816

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mego M, Gao H, Lee BN, Cohen EN, Tin S, Giordano A et al (2012b) Prognostic value of EMT-circulating tumor cells in metastatic breast cancer patients undergoing high-dose chemotherapy with autologous hematopoietic stem cell transplantation. J Cancer Educ 3:369–380

    CAS  Google Scholar 

  • Méhes G, Witt A, Kubista E, Ambros PF (2001) Circulating breast cancer cells are frequently apoptotic. Am J Pathol 159(1):17–20

    PubMed Central  PubMed  Google Scholar 

  • Mehlen P, Puisieux A (2006) Metastasis: a question of life or death. Nat Rev Cancer 6(6):449–458

    CAS  PubMed  Google Scholar 

  • Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10(24):8152–8162

    PubMed  Google Scholar 

  • Meng Y, Beckett MA, Liang H, Mauceri HJ, Nv R, Cohen KS et al (2010) Blockade of tumor necrosis factor a signaling in tumor-associated macrophages as a radiosensitizing strategy. Cancer Res 70:1534–1543

    CAS  PubMed  Google Scholar 

  • Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M et al (2005a) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115(1):44–55

    PubMed Central  CAS  PubMed  Google Scholar 

  • Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al (2005b) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6(1):56–68

    CAS  PubMed  Google Scholar 

  • Mizutani K, Sud S, McGregor NA, Martinovski G, Rice BT, Craig MJ et al (2009) The chemokine CCL2 increases prostate tumor growth and bone metastasis through macrophage and osteoclast recruitment. Neoplasia 11(11):1235–1242

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moitra K, Lou H, Dean M (2011) Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development. Clin Pharmacol Ther 89(4):491–502

    CAS  PubMed  Google Scholar 

  • Monteiro J, Fodde R (2010) Cancer stemness and metastasis: therapeutic consequences and perspectives. Eur J Cancer 46(7):1198–1203

    CAS  PubMed  Google Scholar 

  • Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311(5769):1880–1885

    CAS  PubMed  Google Scholar 

  • Morel AP, Lièvre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3(8):e2888

    Google Scholar 

  • Morikawa K, Walker SM, Nakajima M, Pathak S, Jessup JM, Fidler IJ (1988) Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res 48(23):6863–6871

    CAS  PubMed  Google Scholar 

  • Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611

    PubMed Central  CAS  PubMed  Google Scholar 

  • Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    PubMed  Google Scholar 

  • Müller V, Stahmann N, Riethdorf S, Rau T, Zabel T, Goetz A et al (2005) Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clin Cancer Res 11(10):3678–3685

    PubMed  Google Scholar 

  • Mundy GR (2002) Metastasis to bone: causes, consequences therapeutic opportunities. Nat Rev Cancer 2:584–593

    CAS  PubMed  Google Scholar 

  • Murdoch C, Lewis CE (2005) Macrophage migration and gene expression in response to tumor hypoxia. Int J Cancer 117(5):701–708

    CAS  PubMed  Google Scholar 

  • Nagai T, Tanaka M, Tsuneyoshi Y, Xu B, Michie SA, Hasui K et al (2009) Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor beta. Cancer Immunol Immunother 58(10):1577–1586

    CAS  PubMed  Google Scholar 

  • Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nash GF, Turner LF, Scully MF, Kakkar AK (2002) Platelets and cancer. Lancet Oncol 3(7):425–430

    CAS  PubMed  Google Scholar 

  • Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM et al (2002) Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 62(7):2162–2218

    CAS  PubMed  Google Scholar 

  • Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK et al (2009) Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113:6206–6214

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen DX, Massagué J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8:341–352

    CAS  PubMed  Google Scholar 

  • Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284

    CAS  PubMed  Google Scholar 

  • Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12:133–143

    CAS  PubMed  Google Scholar 

  • Nieto MA (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342(6159):1234850

    PubMed  Google Scholar 

  • Norton L, Massagué J (2006) Is cancer a disease of self-seeding? Nat Med 12(8):875–878

    CAS  PubMed  Google Scholar 

  • O’Boyle G, Swidenbank I, Marshall H, Barker CE, Armstrong J, White SA et al (2013) Inhibition of CXCR4-CXCL12 chemotaxis in melanoma by AMD11070. Br J Cancer 108(8):1634–1640

    PubMed Central  PubMed  Google Scholar 

  • O’Connell JT, Sugimoto H, Cooke VG, MacDonald BA, Mehta AI, LeBleu VS et al (2011) VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci U S A 108(38):16002–16007

    PubMed Central  PubMed  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    PubMed  Google Scholar 

  • Oka H, Shiozaki H, Kobayashi K, Inoue M, Tahara H, Kobayashi T et al (1993) Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res 53(7):1696–1701

    CAS  PubMed  Google Scholar 

  • Oltean S, Sorg BS, Albrecht T, Bonano VI, Brazas RM, Dewhirst MW et al (2006) Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proc Natl Acad Sci U S A 141103(38):14116–14121

    Google Scholar 

  • Oskarsson T, Massagué J (2012) Extracellular matrix players in metastatic niches. EMBO J 31(2):254–256

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG et al (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17(7):867–874

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pàez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15(3):220–231

    PubMed Central  PubMed  Google Scholar 

  • Pajonk F, Vlashi E, McBride WH (2010) Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited. Stem Cells 28(4):639–648

    PubMed Central  CAS  PubMed  Google Scholar 

  • Palafox M, Ferrer I, Pellegrini P, Vila S, Hernandez-Ortega S, Urruticoechea A et al (2012) RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res 72(11):2879–2888

    Google Scholar 

  • Pallini R, Ricci-Vitiani L, Banna GL, Signore M, Lombardi D, Todaro M et al (2008) Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res 14(24):8205–8212

    CAS  PubMed  Google Scholar 

  • Pantel K, Alix-Panabières C (2007) The clinical significance of circulating tumor cells. Nat Clin Pract Oncol 4(2):62–63

    PubMed  Google Scholar 

  • Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902

    CAS  PubMed  Google Scholar 

  • Park Y, Gerson SL (2005) DNA repair defects in stem cell function and aging. Annu Rev Med 56:495–508

    CAS  PubMed  Google Scholar 

  • Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A et al (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60(3):722–727

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paulus P, Stanley ER, Schafer R, Abraham D, Aharinejad S (2006) Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res 66:4349–4356

    CAS  PubMed  Google Scholar 

  • Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peter ME (2010) Regulating cancer stem cells the miR way. Cell Stem Cell 6(1):4–6

    CAS  PubMed  Google Scholar 

  • Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G et al (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765

    CAS  PubMed  Google Scholar 

  • Piotrowicz RS, Damaj BB, Hachicha M, Incardona F, Howell SB, Finlayson M (2011) A6 peptide activates CD44 adhesive activity, induces FAK and MEK phosphorylation, and inhibits the migration and metastasis of CD44-expressing cells. Mol Cancer Ther 10:2072–2082

    CAS  PubMed  Google Scholar 

  • Playford MP, Schaller MD (2004) The interplay between Src and integrins in normal and tumor biology. Oncogene 48:7928–7946

    Google Scholar 

  • Podsypanina K, Du YC, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H (2008) Seeding and propagation of untransformed mouse mammary cells in the lung. Science 321(5897):1841–1844

    PubMed Central  CAS  PubMed  Google Scholar 

  • Potten CS, Owen G, Booth D (2002) Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 115(11):2381–2388

    CAS  PubMed  Google Scholar 

  • Price DJ, Miralem T, Jiang S, Steinberg R, Avraham H (2001) Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ 12(3):129–135

    CAS  PubMed  Google Scholar 

  • Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9(4):285–293

    PubMed Central  CAS  PubMed  Google Scholar 

  • Puig-Kröger A, Sierra-Filardi E, Domínguez-Soto A, Samaniego R, Corcuera MT, Gómez-Aguado F et al (2009) Folate receptor beta is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res 69(24):9395–9403

    PubMed  Google Scholar 

  • Pulaski HL, Spahlinger G, Silva IA, McLean K, Kueck AS, Reynolds RK et al (2009) Identifying alemtuzumab as an anti-myeloid cell antiangiogenic therapy for the treatment of ovarian cancer. J Transl Med 7:49

    PubMed Central  PubMed  Google Scholar 

  • Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225

    PubMed Central  CAS  PubMed  Google Scholar 

  • Radinsky R (1991) Growth factors and their receptors in metastasis. Semin Cancer Biol 2(3):169–177

    CAS  PubMed  Google Scholar 

  • Radinsky R, Risin S, Fan D, Dong Z, Bielenberg D, Bucana CD et al (1995) Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells. Clin Cancer Res 1(1):19–31

    CAS  PubMed  Google Scholar 

  • Radisky DC, LaBarge MA (2008) Epithelial-mesenchymal transition and the stem cell phenotype. Cell Stem Cell 2(6):511–512

    CAS  PubMed  Google Scholar 

  • Raimondi C, Gradilone A, Naso G, Vincenzi B, Petracca A, Nicolazzo C et al (2011) Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat 130(2):449–455

    CAS  PubMed  Google Scholar 

  • Ramsey DM, McAlpine SR (2013) Halting metastasis through CXCR4 inhibition. Bioorg Med Chem Lett 23(1):20–25

    CAS  PubMed  Google Scholar 

  • Rappa G, Fodstad O, Lorico A (2008) The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells 26:3008–3017

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rattigan Y, Hsu JM, Mishra PJ, Glod J, Banerjee D (2010) Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu. Exp Cell Res 316(20):3417–3424

    CAS  PubMed  Google Scholar 

  • Redjal N, Chan JA, Segal RA, Kung AL (2006) CXCR4 inhibition synergizes with cytotoxic chemotherapy in gliomas. Clin Cancer Res 12(22):6765–6771

    CAS  PubMed  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850

    CAS  PubMed  Google Scholar 

  • Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56(24):5754–5757

    CAS  PubMed  Google Scholar 

  • Rich JN (2007) Cancer stem cells in radiation resistance. Cancer Res 67(19):8980–8984

    CAS  PubMed  Google Scholar 

  • Riechelmann H, Sauter A, Golze W, Hanft G, Schroen C, Hoermann K et al (2008) Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol 44:823–829

    CAS  PubMed  Google Scholar 

  • Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ (2009) CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 284:34342–34354

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rohwedel J, Guan K, Wobus AM (1999) Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs 165:190–202

    CAS  PubMed  Google Scholar 

  • Roland CL, Dineen SP, Lynn KD, Sullivan LA, Dellinger MT, Sadegh L et al (2009) Inhibition of vascular endothelial growth factor reduces angiogenesis and modulates immune cell infiltration of orthotopic breast cancer xenografts. Mol Cancer Ther 8(7):1761–1771

    CAS  PubMed  Google Scholar 

  • Ross AA, Cooper BW, Lazarus HM, Mackay W, Moss TJ, Ciobanu N et al (1993) Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood 82(9):2605–2610

    CAS  PubMed  Google Scholar 

  • Rudnick JA, Arendt LM, Klebba I, Hinds JW, Iyer V, Gupta PB et al (2011) Functional heterogeneity of breast fibroblasts is defined by a prostaglandin secretory phenotype that promotes expansion of cancer-stem like cells. PLoS One 6(9), e24605

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruoslahti E (1994–1995) Fibronectin and its alpha 5 beta 1 integrin receptor in malignancy. Invasion Metastasis 14(1–6):87–97

    Google Scholar 

  • Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sceneay J, Smyth MJ, Moller A (2013) The pre-metastatic niche: finding common ground. Cancer Metastasis Rev 32:449–464

    CAS  PubMed  Google Scholar 

  • Schardt JA, Meyer M, Hartmann CH, Schubert F, Schmidt-Kittler O, Fuhrmann C et al (2005) Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8(3):227–239

    CAS  PubMed  Google Scholar 

  • Schewe DM, Aguirre-Ghiso JA (2009) Inhibition of eIF2α dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res 69:1545–1552

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJ et al (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A 100(13):7737–7742

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schröder C, Schumacher U, Fogel M, Feuerhake F, Müller V, Wirtz RM et al (2009) Expression and prognostic value of L1-CAM in breast cancer. Oncol Rep 22(5):1109–1117

    PubMed  Google Scholar 

  • Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587):983–985

    CAS  PubMed  Google Scholar 

  • Seton-Rogers S (2011) Cancer stem cells. VEGF promotes stemness. Nat Rev Cancer 11(12):831

    CAS  PubMed  Google Scholar 

  • Shao R, Bao S, Bai X, Blanchette C, Anderson RM, Dang T et al (2004) Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cell Biol 9:3992–4003

    Google Scholar 

  • Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S et al (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141(1):69–80

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shi X, Zhang Y, Zheng J, Pan J (2012) Reactive oxygen species in cancer stem cells. Antioxid Redox Signal 16(11):1215–1228

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shien K, Toyooka S, Ichimura K, Soh J, Furukawa M, Maki Y et al (2012) Prognostic impact of cancer stem cell-related markers in non-small cell lung cancer patients treated with induction chemoradiotherapy. Lung Cancer 77(1):162–167

    PubMed  Google Scholar 

  • Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121(4):1298–1312

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shiozawa Y, Nie B, Pienta KJ, Morgan TM, Taichman RS (2013) Cancer stem cells and their role in metastasis. Pharmacol Ther 138(2):285–293

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117:1155–1166

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG et al (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18(5):349–355

    CAS  PubMed  Google Scholar 

  • Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174:636–645

    CAS  PubMed  Google Scholar 

  • Sleeman JP, Nazarenko I, Thiele W (2011) Do all roads lead to Rome? Routes to metastasis development. Int J Cancer 128(11):2511–2526

    CAS  PubMed  Google Scholar 

  • Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D et al (2004) CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 64(23):8604–8612

    CAS  PubMed  Google Scholar 

  • Sneddon JB (2007) The cancer stem cell niche. Cell Stem Cell 1:607–661

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soeda A, Park M, Lee D, Lee D, Mintz A, Androutsellis-Theotokis A et al (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28(45):3949–3959

    CAS  PubMed  Google Scholar 

  • Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86:1065–1073

    CAS  PubMed  Google Scholar 

  • Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14(9):611–622

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904

    CAS  PubMed  Google Scholar 

  • Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A 107(43):18392–18397

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stupack DG, Teitz T, Potter MD, Mikolon D, Houghton PJ, Kidd VJ et al (2006) Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 439(7072):95–99

    CAS  PubMed  Google Scholar 

  • Sun YX, Fang M, Wang J, Cooper CR, Pienta KJ, Taichman RS (2007) Expression and activation of alpha v beta 3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells. Prostate 67(1):61–73

    CAS  PubMed  Google Scholar 

  • Sun P, Xia S, Lal B, Eberhart CG, Quinones-Hinojosa A, Maciaczyk J et al (2009) DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation. Stem Cells 27(7):1473–1486

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi Y, Mai M (2005) Antibody against vascular endothelial growth factor (VEGF) inhibits angiogenic switch and liver metastasis in orthotopic xenograft model with site-dependent expression of VEGF. J Exp Clin Cancer Res 24(2):237–243

    CAS  PubMed  Google Scholar 

  • Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8:97–106

    CAS  PubMed  Google Scholar 

  • Tanaka K, Hiraiwa N, Hashimoto H, Yamazaki Y, Kusakabe M (2004) Tenascin-C regulates angiogenesis in tumor through the regulation of vascular endothelial growth factor expression. Int J Cancer 108:31–40

    CAS  PubMed  Google Scholar 

  • Tang X, Mo C, Wang Y, Wei D, Xiao H (2013) Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology 138(2):93–104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tate CR, Rhodes LV, Segar HC, Driver JL, Pounder FN, Burow ME (2012) Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res 14:R79

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Terranova VP, Williams JE, Liotta LA, Martin GR (1984) Modulation of the metastatic activity of melanoma cells by laminin and fibronectin. Science 226(4677):982–985

    CAS  PubMed  Google Scholar 

  • Theodoropoulos PA, Polioudaki H, Agelaki S, Kallergi G, Saridaki Z, Mavroudis D et al (2010) Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett 288:99–106

    CAS  PubMed  Google Scholar 

  • Tokes AM, Hortovanyi E, Kulka J, Jackel M, Kerenyi T, Kadar A (1999) Tenascin expression and angiogenesis in breast cancers. Pathol Res Pract 195:821–828

    CAS  PubMed  Google Scholar 

  • Tonini T, Rossi F, Claudio PP (2003) Molecular basis of angiogenesis and cancer. Oncogene 22:6549–6556

    CAS  PubMed  Google Scholar 

  • Townson JL, Chambers AF (2006) Dormancy of solitary metastatic cells. Cell Cycle 5(16):1744–1750

    CAS  PubMed  Google Scholar 

  • Tsagozis P, Eriksson F, Pisa P (2008) Zoledronic acid modulates antitumoral responses of prostate cancer-tumor associated macrophages. Cancer Immunol Immunother 57:1451–1459

    CAS  PubMed  Google Scholar 

  • Tsai HC, Li H, Van Neste L, Cai Y, Robert C, Rassool FV et al (2012) Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21(3):430–446

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsuji T, Ibaragi S, Shima K, Hu MG, Katsurano M, Sasaki A et al (2008) Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Res 68(24):10377–10386

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tsuji T, Ibaragi S, Hu GF (2009) Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 69(18):7135–7139

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tyagi A, Singh RP, Ramasamy K, Raina K, Redente EF, Dwyer-Nield LD et al (2009) Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kappaB and signal transducers and activators of transcription 3. Cancer Prev Res 2(1):74–83

    CAS  Google Scholar 

  • Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH, Lee DJ et al (2014) Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156(5):1002–1016

    PubMed Central  CAS  PubMed  Google Scholar 

  • Van Ginderachter JA, Movahedi K, Van den Bossche J, De Baetselier P (2008) Macrophages, PPARs, and Cancer. PPAR Res 2008:169414

    PubMed Central  PubMed  Google Scholar 

  • van Moorselaar RJ, Voest EE (2002) Angiogenesis in prostate cancer: its role in disease progression and possible therapeutic approaches. Mol Cell Endocrinol 197(1-2):239–250

    PubMed  Google Scholar 

  • Veltman JD, Lambers MEH, van Nimwegen M, Hendriks RW, Hoogsteden HC, Hegmans JP et al (2010) Zoledronic acid impairs myeloid differentiation to tumour associated macrophages in mesothelioma. Br J Cancer 103:629–641

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vermeulen L, de Sousa E, Melo F, van der Heijden M, Cameron K, de Jong JH et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476

    CAS  PubMed  Google Scholar 

  • Vincan E, Brabletz T, Faux MC, Ramsay RG (2007) A human three-dimensional cell line model allows the study of dynamic and reversible epithelial-mesenchymal and mesenchymal-epithelial transition that underpins colorectal carcinogenesis. Cells Tissues Organs 185(1-3):20–28

    PubMed  Google Scholar 

  • Vishvakarma NK, Singh SM (2010) Immunopotentiating effect of proton pump inhibitor pantoprazole in a lymphoma-bearing murine host: implication in antitumor activation of tumor-associated macrophages. Immunol Lett 134:83–92

    CAS  PubMed  Google Scholar 

  • Von Holst A (2008) Tenascin C in stem cell niches: redundant, permissive or instructive? Cells Tissues Organs 188(1-2):170–177

    Google Scholar 

  • Wang H, Fu W, Im JH, Zhou Z, Santoro SA, Iyer V et al (2004) Tumor cell alpha3beta1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell Biol 164(6):935–941

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Q, Chen ZG, Du CZ, Wang HW, Yan L, Gu J (2009) Cancer stem cell marker CD133+ tumour cells and clinical outcome in rectal cancer. Histopathology 55(3):284–293

    PubMed  Google Scholar 

  • Welford AF, Biziato D, Coffelt SB, Nucera S, Fisher M, Pucci F et al (2011) TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J Clin Invest 121(5):1969–1973

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wels J, Kaplan RN, Rafii S, Lyden D (2008) Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 22(5):559–574

    PubMed Central  CAS  PubMed  Google Scholar 

  • Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu KJ (2011) Direct activation of Bmi1 by Twist1: implications in cancer stemness, epithelial-mesenchymal transition, and clinical significance. Chang Gung Med J 34(3):229–238

    PubMed  Google Scholar 

  • Wu Y, Wu PY (2009) CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev 18:1127–1134

    CAS  PubMed  Google Scholar 

  • Wu KJ, Yang MH (2011) Epithelial-mesenchymal transition and cancer stemness: the Twist1-Bmi1 connection. Biosci Rep 31(6):449–455

    PubMed  Google Scholar 

  • Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H (2009) Sunitinib inhibition of STAT3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res 69:2506–2513

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B et al (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467(7319):1114–1117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939

    CAS  PubMed  Google Scholar 

  • Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ et al (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10(3):295–305

    CAS  PubMed  Google Scholar 

  • Yao D, Dai C, Peng S (2011) Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res 9(12):1608–1620

    CAS  PubMed  Google Scholar 

  • Yates CC, Shepard CR, Stolz DB, Wells A (2007) Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br J Cancer 96(8):1246–1252

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R et al (1999) TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103(2):197–206

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339(6119):580–584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu H, Lee H, Herrmann A, Buettner R, Jove R (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 14(11):736–746

    CAS  PubMed  Google Scholar 

  • Zarrilli R, Bruni CB, Riccio A (1994) Multiple levels of control of insulin-like growth factor gene expression. Mol Cell Endocrinol 101(1-2):R1–R14

    CAS  PubMed  Google Scholar 

  • Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AHM, Ballmer-Hofer K, Schwendener RA (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95:272–281

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng Z, Samudio IJ, Munsell M, An J, Huang Z, Estey E et al (2006) Inhibition of CXCR4 with the novel RCP168 peptide overcomes stroma-mediated chemoresistance in chronic and acute leukemias. Mol Cancer Ther 5(12):3113–3121

    CAS  PubMed  Google Scholar 

  • Zhan M, Zhao H, Han ZC (2004) Signalling mechanisms of anoikis. Histol Histopathol 19(3):973–983

    CAS  PubMed  Google Scholar 

  • Zhang JW, Niu C, Ye L, Huang HY, He X, Tong WG et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    CAS  PubMed  Google Scholar 

  • Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M et al (2009) Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16(1):67–78

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang W, Zhu XD, Sun HC, Xiong YQ, Zhuang PY, Xu HX et al (2010) Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res 16(13):3420–3430

    CAS  PubMed  Google Scholar 

  • Zhang XH, Jin X, Malladi S, Zou Y, Wen YH, Brogi E et al (2013) Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154(5):1060–1073

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao P, Li Y, Lu Y (2010) Aberrant expression of CD133 protein correlates with Ki-67 expression and is a prognostic marker in gastric adenocarcinoma. BMC Cancer 10:218

    Google Scholar 

  • Zhu J, Emerson SG (2004) A new bone to pick: osteoblasts and the haematopoietic stem-cell niche. Bioessays 26(6):595–599

    PubMed  Google Scholar 

  • Zhu XD, Zhang JB, Zhuang PY, Zhu HG, Zhang W, Xiong YQ et al (2008) High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol 26(16):2707–2716

    PubMed  Google Scholar 

  • Zhu X, Fujita M, Snyder L, Okada H (2010) Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. J Neurooncol 104:83–92

    PubMed Central  PubMed  Google Scholar 

  • Zlotnik A, Burkhardt AM, Homey B (2011) Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol 11(9):597–606

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Ferrari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferrari, P., Nicolini, A. (2015). Cellular Plasticity, Cancer Stem Cells and Metastasis. In: Babashah, S. (eds) Cancer Stem Cells: Emerging Concepts and Future Perspectives in Translational Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-21030-8_2

Download citation

Publish with us

Policies and ethics