Skip to main content

Glioblastoma Cancer Stem Cells

  • Chapter
  • 1048 Accesses

Abstract

Many types of cancer, including Glioblastoma (GBM), contain functionally subsets of cells with stem-like properties named cancer stem cells (CSCs). These are characterized by chemotherapy resistance and considered one of the key determinants driving tumor relapse. Many studies demonstrated that glioma stem cells (GSCs) reside in particular tumor niches that are necessary to support their behaviour. Indeed, the microenvironment is essential for GBM tumorigenesis and progression, particularly for the continuous signal communications between GSCs and cells belonging to the GBM niches, like endothelium or pericytes, which give rise to a complex plasticity of the tumor. This signal integration originates numerous mechanisms which lead to resistance to therapy. Understanding the mechanism of action of the microenvironmental signals and the interplay between different cell types within the tumor mass, open new questions on how GSCs modulate GBM aggressiveness and response to therapy. The definition of these tumor features will allow to setup innovative multimodal therapies able to target GBM cells at multiple levels. In this chapter, we will discuss the major advances in the study of GSCs role in GBM and the therapeutic implications resulting from them, thus reporting the development of new targeted-therapies applied to counteract and overcome GBM intrinsic resistance to therapy which could improve the overall therapeutic ratio of conventional treatments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467(7313):323–327

    PubMed Central  CAS  PubMed  Google Scholar 

  • Altman FA (1965) The origin of the first cancer cell. Arch Geschwulstforsch 25(1):21–31

    CAS  PubMed  Google Scholar 

  • Altman J, Das GD (1965) Post-natal origin of microneurones in the rat brain. Nature 207(5000):953–956

    CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas S, Simpson P (1991) Choosing a cell fate: a view from the Notch locus. Trends Genet 7(11–12):403–408

    CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, Li Z, Sathornsumetee S, Wang H, McLendon RE, Hjelmeland AB, Rich JN (2008) Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68(15):6043–6048

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, Piccirillo S, Vescovi AL, DiMeco F, Olivi A, Eberhart CG (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25(10):2524–2533

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 177(3):1491–1502

    PubMed Central  CAS  PubMed  Google Scholar 

  • Binda E, Visioli A, Giani F, Lamorte G, Copetti M, Pitter KL, Huse JT, Cajola L, Zanetti N, DiMeco F, De Filippis L, Mangiola A, Maira G, Anile C, De Bonis P, Reynolds BA, Pasquale EB, Vescovi AL (2012) The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell 22(6):765–780

    PubMed Central  CAS  PubMed  Google Scholar 

  • Binda E, Reynolds BA, Vescovi AL (2014) Glioma stem cells: turpis omen in nomen? (The evil in the name?). J Intern Med 276(1):25–40

    CAS  PubMed  Google Scholar 

  • Binello E, Germano IM (2011) Targeting glioma stem cells: a novel framework for brain tumors. Cancer Sci 102(11):1958–1966

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4(3):226–235

    PubMed Central  CAS  PubMed  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82

    CAS  PubMed  Google Scholar 

  • Campos B, Wan F, Farhadi M, Ernst A, Zeppernick F, Tagscherer KE, Ahmadi R, Lohr J, Dictus C, Gdynia G, Combs SE, Goidts V, Helmke BM, Eckstein V, Roth W, Beckhove P, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende C (2010) Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res 16(10):2715–2728

    CAS  PubMed  Google Scholar 

  • Cancer-Genome-Atlas-Research-Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

    Google Scholar 

  • Cayuso J, Ulloa F, Cox B, Briscoe J, Marti E (2006) The Sonic hedgehog pathway independently controls the patterning, proliferation and survival of neuroepithelial cells by regulating Gli activity. Development 133(3):517–528

    CAS  PubMed  Google Scholar 

  • Charles N, Holland EC (2010) The perivascular niche microenvironment in brain tumor progression. Cell Cycle 9(15):3012–3021

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chearwae W, Bright JJ (2008) PPARgamma agonists inhibit growth and expansion of CD133+ brain tumour stem cells. Br J Cancer 99(12):2044–2053

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen HL, Panchision DM (2007) Concise review: bone morphogenetic protein pleiotropism in neural stem cells and their derivatives–alternative pathways, convergent signals. Stem Cells 25(1):63–68

    CAS  PubMed  Google Scholar 

  • Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour LL, Rivers CS, Modrusan Z, Nacu S, Guerrero S, Edgar KA, Wallin JJ, Lamszus K, Westphal M, Heim S, James CD, VandenBerg SR, Costello JF, Moorefield S, Cowdrey CJ, Prados M, Phillips HS (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17(4):362–375

    CAS  PubMed  Google Scholar 

  • Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE, Mao Y, Lathia JD, Min W, McLendon RE, Rich JN, Bao S (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153(1):139–152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chirasani SR, Sternjak A, Wend P, Momma S, Campos B, Herrmann IM, Graf D, Mitsiadis T, Herold-Mende C, Besser D, Synowitz M, Kettenmann H, Glass R (2010) Bone morphogenetic protein-7 release from endogenous neural precursor cells suppresses the tumourigenicity of stem-like glioblastoma cells. Brain 133(Pt 7):1961–1972

    PubMed  Google Scholar 

  • Chua C, Zaiden N, Chong KH, See SJ, Wong MC, Ang BT, Tang C (2008) Characterization of a side population of astrocytoma cells in response to temozolomide. J Neurosurg 109(5):856–866

    CAS  PubMed  Google Scholar 

  • Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17(2):165–172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coskun V, Wu H, Blanchi B, Tsao S, Kim K, Zhao J, Biancotti JC, Hutnick L, Krueger RC Jr, Fan G, de Vellis J, Sun YE (2008) CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci USA 105(3):1026–1031

    PubMed Central  CAS  PubMed  Google Scholar 

  • Day BW, Stringer BW, Al-Ejeh F, Ting MJ, Wilson J, Ensbey KS, Jamieson PR, Bruce ZC, Lim YC, Offenhauser C, Charmsaz S, Cooper LT, Ellacott JK, Harding A, Leveque L, Inglis P, Allan S, Walker DG, Lackmann M, Osborne G, Khanna KK, Reynolds BA, Lickliter JD, Boyd AW (2013) EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell 23(2):238–248

    CAS  PubMed  Google Scholar 

  • Della Puppa A, Persano L, Masi G, Rampazzo E, Sinigaglia A, Pistollato F, Denaro L, Barzon L, Palu G, Basso G, Scienza R, d’Avella D (2012) MGMT expression and promoter methylation status may depend on the site of surgical sample collection within glioblastoma: a possible pitfall in stratification of patients? J Neurooncol 106(1):33–41

    CAS  PubMed  Google Scholar 

  • Depaepe V, Suarez-Gonzalez N, Dufour A, Passante L, Gorski JA, Jones KR, Ledent C, Vanderhaeghen P (2005) Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature 435(7046):1244–1250

    CAS  PubMed  Google Scholar 

  • Dirks PB (2008) Brain tumor stem cells: bringing order to the chaos of brain cancer. J Clin Oncol 26(17):2916–2924

    PubMed  Google Scholar 

  • Dong L, Qi N, Ge RM, Cao CL, Lan F, Shen L (2010) Overexpression of CD133 promotes the phosphorylation of Erk in U87MG human glioblastoma cells. Neurosci Lett 484(3):210–214

    CAS  PubMed  Google Scholar 

  • Ernst A, Hofmann S, Ahmadi R, Becker N, Korshunov A, Engel F, Hartmann C, Felsberg J, Sabel M, Peterziel H, Durchdewald M, Hess J, Barbus S, Campos B, Starzinski-Powitz A, Unterberg A, Reifenberger G, Lichter P, Herold-Mende C, Radlwimmer B (2009) Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival. Clin Cancer Res 15(21):6541–6550

    CAS  PubMed  Google Scholar 

  • Eyler CE, Foo WC, LaFiura KM, McLendon RE, Hjelmeland AB, Rich JN (2008) Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells 26(12):3027–3036

    PubMed Central  CAS  PubMed  Google Scholar 

  • Facchino S, Abdouh M, Bernier G (2011) Brain cancer stem cells: current status on glioblastoma multiforme. Cancers (Basel) 3(2):1777–1797

    CAS  Google Scholar 

  • Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, Nikkhah G, Dimeco F, Piccirillo S, Vescovi AL, Eberhart CG (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28(1):5–16

    PubMed Central  CAS  PubMed  Google Scholar 

  • Florio T, Barbieri F (2012) The status of the art of human malignant glioma management: the promising role of targeting tumor-initiating cells. Drug Discov Today 17(19–20):1103–1110

    CAS  PubMed  Google Scholar 

  • Gallia GL, Tyler BM, Hann CL, Siu IM, Giranda VL, Vescovi AL, Brem H, Riggins GJ (2009) Inhibition of Akt inhibits growth of glioblastoma and glioblastoma stem-like cells. Mol Cancer Ther 8(2):386–393

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gilbert CA, Daou MC, Moser RP, Ross AH (2010) Gamma-secretase inhibitors enhance temozolomide treatment of human gliomas by inhibiting neurosphere repopulation and xenograft recurrence. Cancer Res 70(17):6870–6879

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzalez-Gomez P, Sanchez P, Mira H (2011) MicroRNAs as regulators of neural stem cell-related pathways in glioblastoma multiforme. Mol Neurobiol 44(3):235–249

    CAS  PubMed  Google Scholar 

  • Hambardzumyan D, Becher OJ, Holland EC (2008a) Cancer stem cells and survival pathways. Cell Cycle 7(10):1371–1378

    CAS  PubMed  Google Scholar 

  • Hambardzumyan D, Squatrito M, Carbajal E, Holland EC (2008b) Glioma formation, cancer stem cells, and akt signaling. Stem Cell Rev 4(3):203–210

    CAS  PubMed  Google Scholar 

  • Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47

    CAS  PubMed  Google Scholar 

  • Hoelzinger DB, Demuth T, Berens ME (2007) Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99(21):1583–1593

    CAS  PubMed  Google Scholar 

  • Holmberg J, Armulik A, Senti KA, Edoff K, Spalding K, Momma S, Cassidy R, Flanagan JG, Frisen J (2005) Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev 19(4):462–471

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der Heijden M, Moayedpardazi H, Correia AS, Soulet D, Major T, Menon J, Tabar V (2010) Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 28(6):1019–1029

    CAS  PubMed  Google Scholar 

  • Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39(3):193–206

    PubMed  Google Scholar 

  • Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5(5):504–514

    CAS  PubMed  Google Scholar 

  • Ikushima H, Todo T, Ino Y, Takahashi M, Saito N, Miyazawa K, Miyazono K (2011) Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem 286(48):41434–41441

    PubMed Central  CAS  PubMed  Google Scholar 

  • Inda MM, Bonavia R, Mukasa A, Narita Y, Sah DW, Vandenberg S, Brennan C, Johns TG, Bachoo R, Hadwiger P, Tan P, Depinho RA, Cavenee W, Furnari F (2010) Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 24(16):1731–1745

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jackson EL, Alvarez-Buylla A (2008) Characterization of adult neural stem cells and their relation to brain tumors. Cells Tissues Organs 188(1–2):212–224

    PubMed  Google Scholar 

  • Jiang X, Xing H, Kim TM, Jung Y, Huang W, Yang HW, Song S, Park PJ, Carroll RS, Johnson MD (2012) Numb regulates glioma stem cell fate and growth by altering epidermal growth factor receptor and Skp1-Cullin-F-box ubiquitin ligase activity. Stem Cells 30(7):1313–1326

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johannessen TC, Bjerkvig R, Tysnes BB (2008) DNA repair and cancer stem-like cells–potential partners in glioma drug resistance? Cancer Treat Rev 34(6):558–567

    CAS  PubMed  Google Scholar 

  • Kang MK, Kang SK (2008) Pharmacologic blockade of chloride channel synergistically enhances apoptosis of chemotherapeutic drug-resistant cancer stem cells. Biochem Biophys Res Commun 373(4):539–544

    CAS  PubMed  Google Scholar 

  • Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol 7(2):134–153

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim Y, Kim KH, Lee J, Lee YA, Kim M, Lee SJ, Park K, Yang H, Jin J, Joo KM, Lee J, Nam DH (2012) Wnt activation is implicated in glioblastoma radioresistance. Lab Invest 92(3):466–473

    CAS  PubMed  Google Scholar 

  • Koh MY, Powis G (2012) Passing the baton: the HIF switch. Trends Biochem Sci 37(9):364–372

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9(5):391–403

    CAS  PubMed  Google Scholar 

  • Lee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH, Kotliarova S, Kotliarov Y, Walling J, Ahn S, Kim M, Totonchy M, Cusack T, Ene C, Ma H, Su Q, Zenklusen JC, Zhang W, Maric D, Fine HA (2008) Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13(1):69–80

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15(6):501–513

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li Z, Wang J, Gong L, Wen Z, Xu C, Huang X (2011) Correlation of delta-like ligand 4 (DLL4) with VEGF and HIF-1alpha expression in human glioma. Asian Pac J Cancer Prev 12(1):215–218

    PubMed  Google Scholar 

  • Lino MM, Merlo A, Boulay JL (2010) Notch signaling in glioblastoma: a developmental drug target? BMC Med 8:72

    PubMed Central  PubMed  Google Scholar 

  • Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    PubMed Central  PubMed  Google Scholar 

  • Lorusso PM, Jimeno A, Dy G, Adjei A, Berlin J, Leichman L, Low JA, Colburn D, Chang I, Cheeti S, Jin JY, Graham RA (2011) Pharmacokinetic dose-scheduling study of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with locally advanced or metastatic solid tumors. Clin Cancer Res 17(17):5774–5782

    CAS  PubMed  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    PubMed Central  PubMed  Google Scholar 

  • Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40(2):294–309

    PubMed Central  CAS  PubMed  Google Scholar 

  • McCord AM, Jamal M, Shankavaram UT, Lang FF, Camphausen K, Tofilon PJ (2009) Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res 7(4):489–497

    CAS  PubMed  Google Scholar 

  • McLendon RE, Rich JN (2011) Glioblastoma stem cells: a neuropathologist’s view. J Oncol 2011:397195

    PubMed Central  PubMed  Google Scholar 

  • Merchant AA, Matsui W (2012) Targeting hedgehog–a cancer stem cell pathway. Clin Cancer Res 16(12):3130–3140

    Google Scholar 

  • Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, Maguire C, Gammer TL, Mackey JR, Fulton D, Abdulkarim B, McMurtry MS, Petruk KC (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2(31):31–34

    Google Scholar 

  • Mizutani K, Yoon K, Dang L, Tokunaga A, Gaiano N (2007) Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449(7160):351–355

    CAS  PubMed  Google Scholar 

  • Nakai E, Park K, Yawata T, Chihara T, Kumazawa A, Nakabayashi H, Shimizu K (2009) Enhanced MDR1 expression and chemoresistance of cancer stem cells derived from glioblastoma. Cancer Invest 27(9):901–908

    CAS  PubMed  Google Scholar 

  • Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H, Ito Y, Inamura T, Ikezaki K, Fukui M, Iwaki T, Kuwano M (1999) Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res 5(5):1107–1113

    CAS  PubMed  Google Scholar 

  • Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109(1):93–108

    PubMed  Google Scholar 

  • Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133(1):38–52

    CAS  PubMed  Google Scholar 

  • Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, Garcia-Dorado D, Poca MA, Sahuquillo J, Baselga J, Seoane J (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15(4):315–327

    CAS  PubMed  Google Scholar 

  • Perez Castillo A, Aguilar-Morante D, Morales-Garcia JA, Dorado J (2008) Cancer stem cells and brain tumors. Clin Transl Oncol 10(5):262–267

    CAS  PubMed  Google Scholar 

  • Persano L, Rampazzo E, Della Puppa A, Pistollato F, Basso G (2011) The three-layer concentric model of glioblastoma: cancer stem cells, microenvironmental regulation, and therapeutic implications. Sci World J 11:1829–1841

    Google Scholar 

  • Persano L, Pistollato F, Rampazzo E, Della Puppa A, Abbadi S, Frasson C, Volpin F, Indraccolo S, Scienza R, Basso G (2012) BMP2 sensitizes glioblastoma stem-like cells to Temozolomide by affecting HIF-1alpha stability and MGMT expression. Cell Death Dis 3:e412

    PubMed Central  CAS  PubMed  Google Scholar 

  • Persano L, Rampazzo E, Basso G, Viola G (2013) Glioblastoma cancer stem cells: role of the microenvironment and therapeutic targeting. Biochem Pharmacol 85(5):612–622

    CAS  PubMed  Google Scholar 

  • Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J, Jacobsen SE, Nuber UA (2007) CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 67(12):5727–5736

    CAS  PubMed  Google Scholar 

  • Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi AL (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444(7120):761–765

    CAS  PubMed  Google Scholar 

  • Pistollato F, Rampazzo E, Abbadi S, Della Puppa A, Scienza R, D’Avella D, Denaro L, Te Kronnie G, Panchision DM, Basso G (2009) Molecular mechanisms of HIF-1alpha modulation induced by oxygen tension and BMP2 in glioblastoma derived cells. PLoS One 4(7):e6206

    PubMed Central  PubMed  Google Scholar 

  • Pistollato F, Abbadi S, Rampazzo E, Persano L, Della Puppa A, Frasson C, Sarto E, Scienza R, D’Avella D, Basso G (2010) Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 28(5):851–862

    CAS  PubMed  Google Scholar 

  • Pitter KL, Galban CJ, Galban S, Tehrani OS, Li F, Charles N, Bradbury MS, Becher OJ, Chenevert TL, Rehemtulla A, Ross BD, Holland EC, Hambardzumyan D (2011) Perifosine and CCI 779 co-operate to induce cell death and decrease proliferation in PTEN-intact and PTEN-deficient PDGF-driven murine glioblastoma. PLoS One 6(1):e14545

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qiang L, Yang Y, Ma YJ, Chen FH, Zhang LB, Liu W, Qi Q, Lu N, Tao L, Wang XT, You QD, Guo QL (2009) Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett 279(1):13–21

    CAS  PubMed  Google Scholar 

  • Rampazzo E, Persano L, Pistollato F, Moro E, Frasson C, Porazzi P, Della Puppa A, Bresolin S, Battilana G, Indraccolo S, Te Kronnie G, Argenton F, Tiso N, Basso G (2013) Wnt activation promotes neuronal differentiation of glioblastoma. Cell Death Dis 4:e500

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rampazzo E, Della Puppa A, Frasson C, Battilana G, Bianco S, Scienza R, Basso G, Persano L (2014) Phenotypic and functional characterization of glioblastoma cancer stem cells identified trough 5-aminolevulinic acid-assisted surgery. J Neurooncol 116(3):505–513

    CAS  PubMed  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    CAS  PubMed  Google Scholar 

  • Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175(1):1–13

    CAS  PubMed  Google Scholar 

  • Roggendorf W, Strupp S, Paulus W (1996) Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol 92(3):288–293

    CAS  PubMed  Google Scholar 

  • Romaguera-Ros M, Peris-Celda M, Oliver-De La Cruz J, Carrion-Navarro J, Perez-Garcia A, Garcia-Verdugo JM, Ayuso-Sacido A (2012) Cancer-initiating enriched cell lines from human glioblastoma: preparing for drug discovery assays. Stem Cell Rev 8(1):288–298

    CAS  PubMed  Google Scholar 

  • Rossi M, Magnoni L, Miracco C, Mori E, Tosi P, Pirtoli L, Tini P, Oliveri G, Cosci E, Bakker A (2011) Beta-catenin and Gli1 are prognostic markers in glioblastoma. Cancer Biol Ther 11(8):753–761

    PubMed  Google Scholar 

  • Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62(4):753–764, discussion 264–756

    PubMed  Google Scholar 

  • Sauvageot CM, Weatherbee JL, Kesari S, Winters SE, Barnes J, Dellagatta J, Ramakrishna NR, Stiles CD, Kung AL, Kieran MW, Wen PY (2009) Efficacy of the HSP90 inhibitor 17-AAG in human glioma cell lines and tumorigenic glioma stem cells. Neuro Oncol 11(2):109–121

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schiffer D, Annovazzi L, Caldera V, Mellai M (2010) On the origin and growth of gliomas. Anticancer Res 30(6):1977–1998

    CAS  PubMed  Google Scholar 

  • Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8(4 Suppl):S62–S67

    CAS  PubMed  Google Scholar 

  • Sequerra EB, Costa MR, Menezes JR, Hedin-Pereira C (2013) Adult neural stem cells: plastic or restricted neuronal fates? Development 140(16):3303–3309

    CAS  PubMed  Google Scholar 

  • Shahi MH, Lorente A, Castresana JS (2008) Hedgehog signalling in medulloblastoma, glioblastoma and neuroblastoma. Oncol Rep 19(3):681–688

    CAS  PubMed  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    CAS  PubMed  Google Scholar 

  • Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, Michiue H, Pastorino S, Yang M, Hoffman RM, Kesari S, Verma IM (2011) Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci USA 108(11):4274–4280

    PubMed Central  CAS  PubMed  Google Scholar 

  • Son MJ, Woolard K, Nam DH, Lee J, Fine HA (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4(5):440–452

    CAS  PubMed  Google Scholar 

  • Spence AM, Muzi M, Swanson KR, O’Sullivan F, Rockhill JK, Rajendran JG, Adamsen TC, Link JM, Swanson PE, Yagle KJ, Rostomily RC, Silbergeld DL, Krohn KA (2008) Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res 14(9):2623–2630

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    CAS  PubMed  Google Scholar 

  • Sunayama J, Matsuda K, Sato A, Tachibana K, Suzuki K, Narita Y, Shibui S, Sakurada K, Kayama T, Tomiyama A, Kitanaka C (2010) Crosstalk between the PI3K/mTOR and MEK/ERK pathways involved in the maintenance of self-renewal and tumorigenicity of glioblastoma stem-like cells. Stem Cells 28(11):1930–1939

    CAS  PubMed  Google Scholar 

  • Sunayama J, Sato A, Matsuda K, Tachibana K, Watanabe E, Seino S, Suzuki K, Narita Y, Shibui S, Sakurada K, Kayama T, Tomiyama A, Kitanaka C (2011) FoxO3a functions as a key integrator of cellular signals that control glioblastoma stem-like cell differentiation and tumorigenicity. Stem Cells 29(9):1327–1337

    CAS  PubMed  Google Scholar 

  • Takenobu H, Shimozato O, Nakamura T, Ochiai H, Yamaguchi Y, Ohira M, Nakagawara A, Kamijo T (2011) CD133 suppresses neuroblastoma cell differentiation via signal pathway modification. Oncogene 30(1):97–105

    CAS  PubMed  Google Scholar 

  • Tate CM, Pallini R, Ricci-Vitiani L, Dowless M, Shiyanova T, D’Alessandris GQ, Morgante L, Giannetti S, Larocca LM, di Martino S, Rowlinson SW, De Maria R, Stancato L (2012) A BMP7 variant inhibits the tumorigenic potential of glioblastoma stem-like cells. Cell Death Differ 19:1644–1654

    PubMed Central  CAS  PubMed  Google Scholar 

  • Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97(26):14720–14725

    PubMed Central  CAS  PubMed  Google Scholar 

  • Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC (2002) Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 62(19):5551–5558

    CAS  PubMed  Google Scholar 

  • Ulasov I, Thaci B, Sarvaiya P, Yi R, Guo D, Auffinger B, Pytel P, Zhang L, Kim CK, Borovjagin A, Dey M, Han Y, Baryshnikov AY, Lesniak MS (2013) Inhibition of MMP14 potentiates the therapeutic effect of temozolomide and radiation in gliomas. Cancer Med 2(4):457–467

    PubMed Central  CAS  PubMed  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6(6):425–436

    CAS  PubMed  Google Scholar 

  • Wang J, Sakariassen PO, Tsinkalovsky O, Immervoll H, Boe SO, Svendsen A, Prestegarden L, Rosland G, Thorsen F, Stuhr L, Molven A, Bjerkvig R, Enger PO (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122(4):761–768

    CAS  PubMed  Google Scholar 

  • Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C, Tabar V (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468(7325):829–833

    CAS  PubMed  Google Scholar 

  • Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, Xu W, Cui C, Xing Y, Liu Y, Cao B, Liu C, Wu G, Ao H, Zhang X, Jiang J (2013) Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci USA 110(17):6829–6834

    PubMed Central  CAS  PubMed  Google Scholar 

  • Westphal M, Lamszus K (2011) The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 12(9):495–508

    CAS  PubMed  Google Scholar 

  • Yan K, Yang K, Rich JN (2013) The evolving landscape of glioblastoma stem cells. Curr Opin Neurol 26(6):701–707

    PubMed Central  PubMed  Google Scholar 

  • Yang L, Lin C, Wang L, Guo H, Wang X (2012) Hypoxia and hypoxia-inducible factors in glioblastoma multiforme progression and therapeutic implications. Exp Cell Res 318(19):2417–2426

    CAS  PubMed  Google Scholar 

  • Yoon K, Gaiano N (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8(6):709–715

    CAS  PubMed  Google Scholar 

  • Yuki K, Natsume A, Yokoyama H, Kondo Y, Ohno M, Kato T, Chansakul P, Ito M, Kim SU, Wakabayashi T (2009) Induction of oligodendrogenesis in glioblastoma-initiating cells by IFN-mediated activation of STAT3 signaling. Cancer Lett 284(1):71–79

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampietro Viola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Persano, L., Della Puppa, A., Porcù, E., Maule, F., Viola, G. (2015). Glioblastoma Cancer Stem Cells. In: Babashah, S. (eds) Cancer Stem Cells: Emerging Concepts and Future Perspectives in Translational Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-21030-8_11

Download citation

Publish with us

Policies and ethics