Skip to main content

Seizure Prediction by Graph Mining, Transfer Learning, and Transformation Learning

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9166))

Abstract

We present in this study a novel approach to predicting EEG epileptic seizures: we accurately model and predict non-ictal cortical activity and use prediction errors as parameters that significantly distinguish ictal from non-ictal activity. We suppress seizure-related activity by modeling EEG signal acquisition as a cocktail party problem and obtaining seizure-related activity using Independent Component Analysis. Following recent studies intricately linking seizure to increased, widespread synchrony, we construct dynamic EEG synchronization graphs in which the electrodes are represented as nodes and the pair-wise correspondences between them are represented by edges. We extract 38 intuitive features from the synchronization graph as well as the original signal. From this, we use a rigorous method of feature selection to determine minimally redundant features that can describe the non-ictal EEG signal maximally. We learn a one-step forecast operator restricted to just these features, using autoregression (AR(1)). We improve this in a novel way by cross-learning common knowledge across patients and recordings using Transfer Learning, and devise a novel transformation to increase the efficiency of transfer learning. We declare imminent seizure based on detecting outliers in our prediction errors using a simple and intuitive method. Our median seizure detection time is 11.04 min prior to the labeled start of the seizure compared to a benchmark of 1.25 min prior, based on previous work on the topic. To the authors’ best knowledge this is the first attempt to model seizure prediction in this manner, employing efficient seizure suppression, the use of synchronization graphs and transfer learning, among other novel applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, E., Aykut-Bingol, C., Bingol, H., Bro, R., Yener, B.: Multiway analysis of epilepsy tensors. Bioinformatics 23(13), i10–i18 (2007)

    Article  Google Scholar 

  2. Alkan, A., Koklukaya, E., Subasi, A.: Automatic seizure detection in EEG using logistic regression and artificial neural network. J. Neurosci. Meth. 148(2), 167–176 (2005)

    Article  Google Scholar 

  3. Anderson, N.R., Wisneski, K., Eisenman, L., Moran, D.W., Leuthardt, E.C., Krusienski, D.J.: An offline evaluation of the autoregressive spectrum for electrocorticography. IEEE Trans. Biomed. Eng. 56(3), 913–916 (2009)

    Article  Google Scholar 

  4. Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks, vol. 1. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  5. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  6. Bilgin, C.C., Ray, S., Baydil, B., Daley, W.P., Larsen, M., Yener, B.: Multiscale feature analysis of salivary gland branching morphogenesis. PLoS ONE 7(3), e32906 (2012)

    Article  Google Scholar 

  7. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006). http://www.sciencedirect.com/science/article/pii/S037015730500462X

    Article  MathSciNet  Google Scholar 

  8. Bronzino, J.D.: Principles of electroencephalography. In: Biomedical Engineering Handbook, 3rd edn. Taylor and Francis, New York (2006)

    Google Scholar 

  9. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  10. Chandaka, S., Chatterjee, A., Munshi, S.: Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Syst. Appl. 36(2 Part 1), 1329–1336 (2009)

    Article  Google Scholar 

  11. Chisci, L., Mavino, A., Perferi, G., Sciandrone, M., Anile, C., Colicchio, G., Fuggetta, F.: Real-time epileptic seizure prediction using AR models and support vector machines. IEEE Trans. Biomed. Eng. 57(5), 1124–1132 (2010)

    Article  Google Scholar 

  12. Comon, P.: Independent component analysis - a new concept. Signal Process. 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  13. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications, 1st edn. Academic Press, Oxford (2010)

    Google Scholar 

  14. Corsini, J., Shoker, L., Sanei, S., Alarcon, G.: Epileptic seizure predictability from scalp EEG incorporating constrained blind source separation. IEEE Trans. Biomed. Eng. 53, 790–799 (2006)

    Article  Google Scholar 

  15. Cranstoun, S.D., Ombao, H.C., von Sachs, R., Guo, W., Litt, B., et al.: Time-frequency spectral estimation of multichannel EEG using the auto-slex method. IEEE Trans. Biomed. Eng. 49, 988–996 (2002)

    Article  Google Scholar 

  16. D’Alessandro, M., Vachtsevanos, G., Esteller, R., Echauz, J., Cranstoun, S., Worrell, G., et al.: A multi-feature and multi-channel univariate selection process for seizure prediction. Clin. Neurophysiol. 116, 506–516 (2005)

    Article  Google Scholar 

  17. Delorme, A., Sejnowski, T.J., Makeig, S.: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 34(4), 1443–1449 (2007)

    Article  Google Scholar 

  18. Demir, C., Gultekin, S.H., Yener, B.: Augmented cell-graphs for automated cancer diagnosis. Bioinformatics 21(Suppl. 2), ii7–ii12 (2005)

    Google Scholar 

  19. Dhulekar, N., Oztan, B., Yener, B., Bingol, H.O., Irim, G., Aktekin, B., Aykut-Bingol, C.: Graph-theoretic analysis of epileptic seizures on scalp EEG recordings. In: Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, BCB 2014, pp. 155–163. ACM, New York (2014). http://doi.acm.org/10.1145/2649387.2649423

  20. Douw, L., van Dellen, E., de Groot, M., Heimans, J.J., Klein, M., Stam, C.J., Reijneveld, J.C.: Epilepsy is related to theta band brain connectivity and network topology in brain tumor patients. BMC Neurosci. 11(1), 103 (2010)

    Article  Google Scholar 

  21. Elger, C.E.: Future trends in epileptology. Curr. Opin. Neurol. 14, 185–186 (2001)

    Article  Google Scholar 

  22. Esteller, R., Echauz, J., D’Alessandro, M., Worrell, G., Cranstoun, S., Vachtsevanos, G., et al.: Continuous energy variation during the seizure cycle: towards an on-line accumulated energy. Clin. Neurophysiol. 116, 517–526 (2005)

    Article  Google Scholar 

  23. Fisher, N., Talathi, S.S., Carney, P.R., Ditto, W.L.: Epilepsy detection and monitoring. In: Tong, S., Thankor, N.V. (eds.) Quantitative EEG Analysis Methods and Applications, pp. 157–183. Artech House (2008)

    Google Scholar 

  24. Fisher, R.S., van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., Engel, J.J.: Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the international bureau for epilepsy (IBE). Epilepsia 46(4), 470–472 (2005)

    Article  Google Scholar 

  25. Giannakakis, G., Sakkalis, V., Pediaditis, M., Tsiknakis, M.: Methods for seizure detection and prediction: an overview. Neuromethods, 1–27 (2014)

    Google Scholar 

  26. Güler, N.F., Übeyli, E.D., Güler, I.: Recurrent neural networks employing lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29(3), 506–514 (2005)

    Article  Google Scholar 

  27. Harrison, M.A., Frei, M.G., Osorio, I.: Accumulated energy revisited. Clin. Neurophysiol. 116, 527–531 (2005a)

    Article  Google Scholar 

  28. Hazarika, N., Chen, J.Z., Tsoi, A.C., Sergejew, A.: Classification of EEG signals using the wavelet transform. Signal Process. 59, 61–72 (1997)

    Article  MATH  Google Scholar 

  29. Iasemidis, L.D., Shiau, D.S., Pardalos, P.M., Chaovalitwongse, W., Narayanan, K., Prasad, A., et al.: Long-term prospective on-line real-time seizure-prediction. Clin. Neurophysiol. 116, 532–544 (2005)

    Article  Google Scholar 

  30. Jasper, H.H.: The ten-twenty electrode system of the international federation. Electroencephalogr Clin. Neurophysiol. Suppl. 10, 371–375 (1958)

    Google Scholar 

  31. Jouny, C.C., Franaszczuk, P.J., Bergey, G.K.: Signal complexity and synchrony of epileptic seizures: is there an identifiable preictal period? Clin. Neurophysiol. 116, 552–558 (2005)

    Article  Google Scholar 

  32. Jung, T.P., Makeig, S., Humphries, C., Lee, T.W., McKeown, M.J., Iragui, V., Sejnowski, T.J.: Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37, 163–178 (2000)

    Article  Google Scholar 

  33. Jutten, C., Herault, J.: Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Process. 24, 1–10 (1991)

    Article  MATH  Google Scholar 

  34. Kannathal, N., Choo, M.L., Rajendra Acharya, U., Sadasivan, P.K.: Entropies for detection of epilepsy in EEG. Comput. Meth. Programs Biomed. 80(3), 187–194 (2005)

    Article  Google Scholar 

  35. Kramer, M.A., Kolaczyk, E.D., Kirsch, H.E.: Emergent network topology at seizure onset in humans. Epilepsy Res. 79(2), 173–186 (2008)

    Article  Google Scholar 

  36. Kuhnert, M.T., Elger, C.E., Lehnertz, K.: Long-term variability of global statistical properties of epileptic brain networks. Chaos: Interdisc. J. Nonlinear Sci. 20(4), 043126 (2010). http://scitation.aip.org/content/aip/journal/chaos/20/4/10.1063/1.3504998

    Article  Google Scholar 

  37. Le Van, Q.M., Navarro, V., Martinerie, J., Baulac, M., Varela, F.J.: Toward a neurodynamical understanding of ictogenesis. Epilepsia 44(12), 30–43 (2003)

    Google Scholar 

  38. Le Van, Q.M., Soss, J., Navarro, V., Robertson, R., Chavez, M., Baulac, M., Martinerie, J.: Preictal state identification by synchronization changes in long-term intracranial EEG recordings. Clin. Neurophysiol. 116, 559–568 (2005)

    Article  Google Scholar 

  39. Le Van Quyen, M., Soss, J., Navarro, V., Robertson, R., Chavez, M., Baulac, M., et al.: Preictal state identification by synchronization changes in long-term intracranial EEG recordings. Clin. Neurophysiol. 116, 559–568 (2005)

    Article  Google Scholar 

  40. Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Comput. 11(2), 417–441 (1999)

    Article  Google Scholar 

  41. Lehnertz, K., Litt, B.: The first international collaborative workshop on seizure prediction: summary and data description. Clin. Neurophysiol. 116, 493–505 (2005)

    Article  Google Scholar 

  42. Li, G., Semerci, M., Yener, B., Zaki, M.J.: Effective graph classification based on topological and label attributes. Stat. Anal. Data Min. ASA Data Sci. J. 5(4), 265–283 (2012)

    Article  MathSciNet  Google Scholar 

  43. Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., et al.: Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron 30, 51–64 (2001)

    Article  Google Scholar 

  44. Liu, H.S., Zhang, T., Yang, F.S.: A multistage, multimethod approach for automatic detection and classification of epileptiform EEG. IEEE Trans. Biomed. Eng. 49(12 Pt 2), 1557–1566 (2002)

    Google Scholar 

  45. Lytton, W.W.: Computer modeling of Epilepsy. Nat. Rev. Neurosci. 9(8), 626–637 (2008)

    Article  Google Scholar 

  46. Mahyari, A., Aviyente, S.: Identification of dynamic functional brain network states through tensor decomposition. In: 39th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2014) (2014)

    Google Scholar 

  47. Mirowski, P., Madhavan, D., LeCun, Y., Kuzniecky, R.: Classification of patterns of EEG synchronization for seizure prediction. Clin. Neurophysiol. 120, 1927–1940 (2009)

    Article  Google Scholar 

  48. Mormann, F., Andrzejak, R.G., Elger, C.E., Lehnertz, K.: Seizure prediction: the long and winding road. Brain 130, 314–333 (2007)

    Article  Google Scholar 

  49. Mormann, F., Kreuz, T., Andrzejak, R., David, P., Lehnertz, K., et al.: Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res. 53, 173–185 (2003)

    Article  Google Scholar 

  50. Mormann, F., Kreuz, T., Rieke, C., Andrzejak, R.G., Kraskov, A., David, P., et al.: On the predictability of epileptic seizures. Clin. Neurophysiol. 116, 569–587 (2005)

    Article  Google Scholar 

  51. Mormann, F., Lehnertz, K., David, P., Elger, C.E.: Mean phase coherence as measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144, 358–369 (2000)

    Article  MATH  Google Scholar 

  52. Murali, S., Kulish, V.V.: Modeling of evoked potentials of electroencephalograms: an overview. Digit. Signal Process. 17, 665–674 (2007)

    Article  Google Scholar 

  53. Muthuswamy, J., Thakor, N.V.: Spectral analysis methods for neurological signals. J. Neurosci. Meth. 83, 1–14 (1998)

    Article  Google Scholar 

  54. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  55. Osorio, I., Zaveri, H., Frei, M., Arthurs, S.: Epilepsy: The Intersection of Neurosciences, Biology, Mathematics, Engineering, and Physics. Taylor & Francis (2011). http://books.google.com/books?id=O97hKvyyYgsC

  56. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  57. van Putten, M.J.A.M., Kind, T., Visser, F., Lagerburg, V.: Detecting temporal lobe seizures from scalp EEG recordings: a comparison of various features. Clin. Neurophysiol. 116(10), 2480–2489 (2005)

    Article  Google Scholar 

  58. Rodriguez-Lujan, I., Huerta, R., Elkan, C., Cruz, C.S.: Quadratic programming feature selection. J. Mach. Learn. Res. 11, 1491–1516 (2010)

    MATH  MathSciNet  Google Scholar 

  59. Rogowski, Z., Gath, I., Bental, E.: On the prediction of epileptic seizures. Biol. Cybern. 42, 9–15 (1981)

    Article  Google Scholar 

  60. Salant, Y., Gath, I., Henriksen, O.: Prediction of epileptic seizures from two-channel EEG. Med. Biol. Eng. Comput. 36, 549–556 (1998)

    Article  Google Scholar 

  61. Schindler, K.A., Bialonski, S., Horstmann, M.T., Elger, C.E., Lehnertz, K.: Evolving functional network properties and synchronizability during human epileptic seizures. CHAOS: Interdisc. J. Nonlinear Sci. 18(3), 033119 (2008)

    Article  Google Scholar 

  62. Siegel, A., Grady, C.L., Mirsky, A.F.: Prediction of spike-wave bursts in absence epilepsy by EEG power-spectrum signals. Epilepsia 116, 2266–2301 (1982)

    Google Scholar 

  63. Smith, S.J.M.: EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 76, ii2–ii7 (2005)

    Google Scholar 

  64. Srinivasan, V., Eswaran, C., Sriraam, N.: Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 29(6), 647–660 (2005)

    Article  Google Scholar 

  65. Stam, C.J., Nolte, G., Daffertshofer, A.: Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 28, 1178–1193 (2007)

    Article  Google Scholar 

  66. Stam, C., van Straaten, E.: The organization of physiological brain networks. Clin. Neurophysiol. 123, 1067–1087 (2012)

    Article  Google Scholar 

  67. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001). http://dx.doi.org/10.1038/35065725

    Article  Google Scholar 

  68. Subasi, A., Alkan, A., Koklukaya, E., Kiymik, M.K.: Wavelet neural network classification of EEG signals by using ar models with mle processing. Neural Netw. 18(7), 985–997 (2005)

    Article  Google Scholar 

  69. Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: The use of time-frequency distributions for epileptic seizure detection in EEG recordings. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1265–1268 (2007)

    Google Scholar 

  70. Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans. Inf. Technol. Biomed. 13(5), 703–710 (2009)

    Article  Google Scholar 

  71. Viglione, S.S., Walsh, G.O.: Epileptic seizure prediction. Electroencephalogr. Clin. Neurophysiol. 39, 435–436 (1975)

    Google Scholar 

  72. Wang, C., Mahadevan, S.: Manifold alignment using procrustes analysis. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 1120–1127. ACM, New York (2008). http://doi.acm.org/10.1145/1390156.1390297

  73. Wu, H., Li, X., Guan, X.: Networking property during epileptic seizure with multi-channel EEG recordings. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3973, pp. 573–578. Springer, Heidelberg (2006). http://dx.doi.org/10.1007/11760191_84

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bülent Yener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dhulekar, N., Nambirajan, S., Oztan, B., Yener, B. (2015). Seizure Prediction by Graph Mining, Transfer Learning, and Transformation Learning. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2015. Lecture Notes in Computer Science(), vol 9166. Springer, Cham. https://doi.org/10.1007/978-3-319-21024-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21024-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21023-0

  • Online ISBN: 978-3-319-21024-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics