We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

The DRs in Ultrathin Films (UFs) of Heavily Doped (HD) Non-parabolic Materials | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

The DRs in Ultrathin Films (UFs) of Heavily Doped (HD) Non-parabolic Materials

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Dispersion Relations in Heavily-Doped Nanostructures

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 569 Accesses

Abstract

This chapter explores the DR in QWs of HD nonlinear optical Materials based on a newly formulated electron dispersion relation considering all types of anisotropies of the energy band spectrum within the framework of k·p formalism in the presence of Gaussian band tails. We have also investigated the DR in QWs of HD III–V, II–VI, IV–VI, stressed Kane type materials, Te, GaP, PtSb2, Bi2Te3, Ge, GaSb, II–V, Lead Germanium Telluride, Zinc and Cadmium Diphosphides respectively. The most striking features are that the presence of poles in the dispersion relation of the materials in the absence of band tail creates the complex energy spectrum in the corresponding HD samples and effective electron mass exists within the band gap which is impossible without the concept of band tails. In the absence of band-tails, the imaginary part vanishes. The constant energy k space is a three dimensional close volume and for 2D electrons \( E - k_{s}^{2} \) is the quantized circles, ellipses and closed 2D quantized surfaces in both real and complex planes respectively. Section 2.4 contains 16 open research problems, which form the integral part of this chapter. The secret of a great scholar is to know some new thing that nobody else know.

The secret of a great scholar is to know some new thing that nobody else know.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.W. Rowe, J.L. Shay, Phys. Rev. B 3, 451 (1973)

    Article  ADS  Google Scholar 

  2. H. Kildal, Phys. Rev. B 10, 5082 (1974)

    Article  ADS  Google Scholar 

  3. J. Bodnar, in Proceedings of the International Conference on Physics of Narrow-gap Semiconductors (Polish Science Publishers, Warsaw, 1978)

    Google Scholar 

  4. G.P. Chuiko, N.N. Chuiko, Sov. Phys. Semicond. 15, 739 (1981)

    Google Scholar 

  5. K.P. Ghatak, S.N. Biswas, Proc. SPIE 1484, 149 (1991)

    Article  ADS  Google Scholar 

  6. J.A. Zapien, Y.K. Liu, Y.Y. Shan, H. Tang, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 90, 213114 (2007)

    Article  ADS  Google Scholar 

  7. M. Park, Proc. SPIE 2524, 142 (1995)

    Article  ADS  Google Scholar 

  8. S.-G. Hur, E.T. Kim, J.H. Lee, G.H. Kim, S.G. Yoon, Electrochem. Solid-State Lett. 11, H176 (2008)

    Article  Google Scholar 

  9. H. Kroemer, Rev. Mod. Phys. 73, 783 (2001)

    Article  ADS  Google Scholar 

  10. T. Nguyen Duy, J. Meslage, G. Pichard, J. Crys. Growth 72, 490 (1985)

    Google Scholar 

  11. T. Aramoto, F. Adurodija, Y. Nishiyama, T. Arita, A. Hanafusa, K. Omura, A. Morita, Solar Energy Mater. Solar Cells 75, 211 (2003)

    Article  Google Scholar 

  12. H.B. Barber, J. Electron. Mater. 25, 1232 (1996)

    Article  ADS  Google Scholar 

  13. S. Taniguchi, T. Hino, S. Itoh, K. Nakano, N. Nakayama, A. Ishibashi, M. Ikeda, Electron. Lett. 32, 552 (1996)

    Article  Google Scholar 

  14. J.J. Hopfield, J. Appl. Phys. 32, 2277 (1961)

    Article  ADS  Google Scholar 

  15. K.P. Ghatak, J.Y. Siddiqui, B. Nag, Phys. Lett. A 282, 428 (2001)

    Article  ADS  Google Scholar 

  16. K.P. Ghatak, S. Karmakar, D. De, S. Pahari, S.K. Charaborty, S.K. Biswas, S. Chowdhury, J. Comput. Theor. Nanosci. 3, 153 (2006)

    Google Scholar 

  17. K.P. Ghatak, M. Mondal, J. Appl. Phys. 66, 3056 (1989)

    Article  ADS  Google Scholar 

  18. K.P. Ghatak, M. Mondal, Thin Solid Films 148, 219 (1987)

    Article  ADS  Google Scholar 

  19. K.P. Ghatak, P.K. Bose, S. Bhattacharya, A. Bhattacharjee, D. De, S. Ghosh, S. Debbarma, N. Paitya, Quantum Matter 2, 83 (2013)

    Article  Google Scholar 

  20. A. Sinha, A.K. Sharma, R. Barui, A.R. Ghatak, S. Bhattacharya, K.P. Ghatak, Physica B 391, 141 (2007)

    Article  ADS  Google Scholar 

  21. G.P. Agrawal, N.K. Dutta, Semicond. Lasers (Van Nostrand Reinhold, New York, 1993)

    Google Scholar 

  22. S. Chatterjee, U. Pal, Opt. Eng. (Bellingham) 32, 2923 (1993)

    Article  ADS  Google Scholar 

  23. T.K. Chaudhuri, Int. J. Energy Res. 16, 481 (1992)

    Article  Google Scholar 

  24. J.H. Dughaish, Phys. B 322, 205 (2002)

    Article  ADS  Google Scholar 

  25. C. Wood, Rep. Prog. Phys. 51, 459 (1988)

    Article  ADS  Google Scholar 

  26. K.-F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Science 303, 818 (2004)

    Article  ADS  Google Scholar 

  27. J. Androulakis, K.F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. D’Angelo, A. Downey, T. Hogan, M.G. Kanatzidis, Adv. Mater. 18, 1170 (2006)

    Article  Google Scholar 

  28. P.F.P. Poudeu, J. D’Angelo, A.D. Downey, J.L. Short, T.P. Hogan, M.G. Kanatzidis, Angew. Chem. Int. Ed. 45, 3835 (2006)

    Article  Google Scholar 

  29. P.F. Poudeu, J. D’Angelo, H. Kong, A. Downey, J.L. Short, R. Pcionek, T.P. Hogan, C. Uher, M.G. Kanatzidis, J. Am. Chem. Soc. 128, 14347 (2006)

    Article  Google Scholar 

  30. J.R. Sootsman, R.J. Pcionek, H. Kong, C. Uher, M.G. Kanatzidis, Chem. Mater. 18, 4993 (2006)

    Article  Google Scholar 

  31. A.J. Mountvala, G. Abowitz, J. Am. Ceram. Soc. 48, 651 (1965)

    Article  Google Scholar 

  32. E.I. Rogacheva, I.M. Krivulkin, O.N. Nashchekina, AYu. Sipatov, V.A. Volobuev, M.S. Dresselhaus. Appl. Phys. Lett. 78, 3238 (2001)

    Article  ADS  Google Scholar 

  33. H.S. Lee, B. Cheong, T.S. Lee, K.S. Lee, W.M. Kim, J.W. Lee, S.H. Cho, J.Y. Huh, Appl. Phys. Lett. 85, 2782 (2004)

    Article  ADS  Google Scholar 

  34. K. Kishimoto, M. Tsukamoto, T. Koyanagi, J. Appl. Phys. 92, 5331 (2002)

    Article  ADS  Google Scholar 

  35. E.I. Rogacheva, O.N. Nashchekina, S.N. Grigorov, M.A. Us, M.S. Dresselhaus, S.B. Cronin, Nanotechnology 14, 53 (2003)

    Article  ADS  Google Scholar 

  36. E.I. Rogacheva, O.N. Nashchekina, A.V. Meriuts, S.G. Lyubchenko, M.S. Dresselhaus, G. Dresselhaus, Appl. Phys. Lett. 86, 063103 (2005)

    Article  ADS  Google Scholar 

  37. E.I. Rogacheva, S.N. Grigorov, O.N. Nashchekina, T.V. Tavrina, S.G. Lyubchenko, AYu. Sipatov, V.V. Volobuev, A.G. Fedorov, M.S. Dresselhaus. Thin Solid Films 493, 41 (2005)

    Article  ADS  Google Scholar 

  38. X. Qiu, Y. Lou, A.C.S. Samia, A. Devadoss, J.D. Burgess, S. Dayal, C. Burda, Angew. Chem. Int. Ed. 44, 5855 (2005)

    Article  Google Scholar 

  39. C. Wang, G. Zhang, S. Fan, Y. Li, J. Phys. Chem. Solids 62, 1957 (2001)

    Article  ADS  Google Scholar 

  40. B. Poudel, W.Z. Wang, D.Z. Wang, J.Y. Huang, Z.F. Ren, J. Nanosci. Nanotechnol. 6, 1050 (2006)

    Article  Google Scholar 

  41. B. Zhang, J. He, T.M. Tritt, Appl. Phys. Lett. 88, 043119 (2006)

    Article  ADS  Google Scholar 

  42. W. Heiss, H. Groiss, E. KaQWmann, G. Hesser, M. Böberl, G. Springholz, F. Schäffler, K. Koike, H. Harada, M. Yano, Appl. Phys. Lett. 88, 192109 (2006)

    Article  ADS  Google Scholar 

  43. B.A. Akimov, V.A. Bogoyavlenskiy, L.I. Ryabova, V.N. Vasil’kov, Phys. Rev. B 61, 16045 (2000)

    Article  ADS  Google Scholar 

  44. Ya. A. Ugai, A.M. Samoilov, M.K. Sharov, O.B. Yatsenko, B.A. Akimov, Inorg. Mater. 38, 12 (2002)

    Google Scholar 

  45. Ya. A. Ugai, A.M. Samoilov, S.A. Buchnev, Yu. V. Synorov, M.K. Sharov, Inorg. Mater. 38, 450 (2002)

    Google Scholar 

  46. A.M. Samoilov, S.A. Buchnev, YuVSynorov, B.L. Agapov, A.M. Khoviv. Inorg. Mater. 39, 1132 (2003)

    Article  Google Scholar 

  47. A.M. Samoilov, S.A. Buchnev, E.A. Dolgopolova, YuVSynorov, A.M. Khoviv. Inorg. Mater. 40, 349 (2004)

    Article  Google Scholar 

  48. H. Murakami, W. Hattori, R. Aoki, Phys. C 269, 83 (1996)

    Article  ADS  Google Scholar 

  49. H. Murakami, W. Hattori, Y. Mizomata, R. Aoki, Phys. C 273, 41 (1996)

    Article  ADS  Google Scholar 

  50. H. Murakami, R. Aoki, K. Sakai, Thin Solid Films 27, 343 (1999)

    Google Scholar 

  51. B.A. Volkov, L.I. Ryabova, D.R. Khokhlov, Phys. Usp. 45, 819 (2002)

    Article  ADS  Google Scholar 

  52. F. Hüe, M. Hÿtch, H. Bender, F. Houdellier, A. Claverie, Phys. Rev. Lett. 100, 156602 (2008)

    Article  ADS  Google Scholar 

  53. S. Banerjee, K.A. Shore, C.J. Mitchell, J.L. Sly, M. Missous, I.E.E. Proc, Circuits Devices Syst. 152, 497 (2005)

    Article  Google Scholar 

  54. M. Razeghi, A. Evans, S. Slivken, J.S. Yu, J.G. Zheng, V.P. Dravid, Proc. SPIE 5840, 54 (2005)

    Article  ADS  Google Scholar 

  55. R.A. Stradling, Semicond. Sci. Technol. 6, C52 (1991)

    Article  Google Scholar 

  56. P.K. Weimer, Proc. IEEE 52, 608 (1964)

    Article  Google Scholar 

  57. G. Ribakovs, A.A. Gundjian, IEEE J. Quant. Electron. QE-14, 42 (1978)

    Google Scholar 

  58. S.K. Dey, J. Vac. Sci. Technol. 10, 227 (1973)

    Article  ADS  Google Scholar 

  59. S.J. Lynch, Thin Solid Films 102, 47 (1983)

    Article  ADS  Google Scholar 

  60. V.V. Kudzin, V.S. Kulakov, D.R. Pape’, S.V. Kulakov, V.V. Molotok, IEEE. Ultrason. Symp. 1, 749 (1997)

    Google Scholar 

  61. F. Hatami, V. Lordi, J.S. Harris, H. Kostial, W.T. Masselink, J. Appl. Phys. 97, 096106 (2005)

    Article  ADS  Google Scholar 

  62. B.W. Wessels, J. Electrochem. Soc. 722, 402 (1975)

    Article  Google Scholar 

  63. D.W.L. Tolfree, J. Sci. Instrum. 41, 788 (1964)

    Article  ADS  Google Scholar 

  64. P.B. Hart, Proc. IEEE 61, 880 (1973)

    Article  Google Scholar 

  65. M.A. Hines, G.D. Scholes, Adv. Mater. 15, 1844 (2003)

    Article  Google Scholar 

  66. C.A. Wang, R.K. Huang, D.A. Shiau, M.K. Connors, P.G. Murphy, P.W. O’Brien, A.C. Anderson, D.M. DePoy, G. Nichols, M.N. Palmisiano, Appl. Phys. Lett. 83, 1286 (2003)

    Article  ADS  Google Scholar 

  67. C.W. Hitchcock, R.J. Gutmann, J.M. Borrego, I.B. Bhat, G.W. Charache, I.E.E.E. Trans, Electron. Devices 46, 2154 (1999)

    Article  ADS  Google Scholar 

  68. H.J. Goldsmid, R.W. Douglas, Br. J. Appl. Phys. 5, 386 (1954)

    Article  ADS  Google Scholar 

  69. F.D. Rosi, B. Abeles, R.V. Jensen, J. Phys. Chem. Sol. 10, 191 (1959)

    Article  ADS  Google Scholar 

  70. T.M. Tritt (ed.), Semiconductors and Semimetals, vols. 69, 70 and 71: Recent Trends in Thermoelectric Materials Research I, II and III (Academic Press, New York, 2000)

    Google Scholar 

  71. D.M. Rowe (ed.), CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, 1995)

    Google Scholar 

  72. D.M. Rowe, C.M. Bhandari, Modern Thermoelectrics (Reston Publishing Company, Virginia, 1983)

    Google Scholar 

  73. D.M. Rowe (ed.), Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca Raton, 2006)

    Google Scholar 

  74. H. Choi, M. Chang, M. Jo, S.J. Jung, H. Hwang, Electrochem. Solid-State Lett. 11, H154 (2008)

    Article  Google Scholar 

  75. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, Appl. Opt. 35, 1956 (1996)

    Article  ADS  Google Scholar 

  76. H.W.H. Lee, B.R. Taylor, S.M. Kauzlarich, Nonlinear Optics: Materials, Fundamentals, and Applications (Technical Digest, 2000), p. 12

    Google Scholar 

  77. E. Brundermann, U. Heugen, A. Bergner, R. Schiwon, G.W. Schwaab, S. Ebbinghaus, D.R. Chamberlin, E.E. Haller, M. Havenith, in 29th International Conference on Infrared and MillimeterWaves and 12th International Conference on Terahertz, Electronics, vol. 283 (2004)

    Google Scholar 

  78. A.N. Baranov, T.I. Voronina, N.S. Zimogorova, L.M. Kauskaya, Y.P. Yakoviev, Sov. Phys. Semicond. 19, 1676 (1985)

    Google Scholar 

  79. M. Yano, Y. Suzuki, T. Ishii, Y. Matsushima, M. Kimata, Jpn. J. Appl. Phys. 17, 2091 (1978)

    Article  ADS  Google Scholar 

  80. F.S. Yuang, Y.K. Su, N.Y. Li, Jpn. J. Appl. Phys. 30, 207 (1991)

    Article  ADS  Google Scholar 

  81. F.S. Yuang, Y.K. Su, N.Y. Li, K.J. Gan, J. Appl. Phys. 68, 6383 (1990)

    Article  ADS  Google Scholar 

  82. Y.K. Su, S.M. Chen, J. Appl. Phys. 73, 8349 (1993)

    Article  ADS  Google Scholar 

  83. S.K. Haywood, A.B. Henriques, N.J. Mason, R.J. Nicholas, P.J. Walker, Semicond. Sci. Technol. 3, 315 (1988)

    Article  ADS  Google Scholar 

  84. G.C. Young, W.W. Anderson, L.B. Anderson, Trans. Electron Dev. IEEE 24, 492 (1977)

    Article  ADS  Google Scholar 

  85. R.L. Gordon, V.I. Neeley, H.R. Curtin, Proc. IEEE 54, 2014 (1966)

    Article  Google Scholar 

  86. P.K. Weimer, Proc. IRE 50, 1462 (1962)

    Article  Google Scholar 

  87. M.J. Lee, S. W. Wright, C. P. Judge, P. Y. Cheung, in Display Research Conference, International Conference Record, p. 211 (1991)

    Google Scholar 

  88. L.A. Vassilev, Phys. Stat. Sol. (b) 121, 203 (1984)

    Article  ADS  Google Scholar 

  89. J.M. Thornton, J. Mol. Biol. 151, 261 (1981); T.E. Creighton, Methods Enzymol. 131, 83 (1986); T.E. Creighton, Bio Essays 8, 57 (1988)

    Google Scholar 

  90. V.J. Hruby, Life Sci. 31, 189 (1982); V.J. Hruby, F. Al-Obeidi, W. Kazmierski, Biochem. J. 268, 249 (1990)

    Google Scholar 

  91. R. Wetzel, Trends Biochem. Sci. 12, 478 (1987)

    Article  Google Scholar 

  92. T. Kimura, R. Matsueda, Y. Nakagawa, E.T. Kaiser, Anal. Biochem. 122, 274 (1982)

    Article  Google Scholar 

  93. D. Andreu, F. Albericio, N.A. Sole, M.C. Munson, M. Ferrer, G. Barnay, in Methods in Molecular Biology, 35 Peptide Synthesis Protocols, ed. by M.W. Pennington, B.M. Dunna (Humana Press Inc., USA, 1994)

    Google Scholar 

  94. E.O. Kane, Phys. Rev. 131, 79 (1963). Phys. Rev. B. 139, 343 (1965)

    Article  Google Scholar 

  95. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Wiley, New York, 1964)

    Google Scholar 

  96. I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1965)

    Google Scholar 

  97. E.O. Kane, in Semiconductors and Semimetals, vol. 1, ed. by R.K. Willirdson, A.C. Beer (Academic Press, New York, 1966), p. 75

    Google Scholar 

  98. E.D Palik, G.B. Wright, in Semiconductors and Semimetals vol. 3, ed. by R.K Willardson, A.C Beer, 3 (Academic Press, New York, USA, 1967), p. 421; H.I. Zhang, Phys. Rev, 1B, 3450 (1970)

    Google Scholar 

  99. G.E. Stillman, C.M. Wolfe, J.O. Dimmock, in Semiconductors and Semimetals, vol. 12, ed. by R.K. Willardon, A.C. Beer (Academic Press, New York, 1977), p. 169

    Google Scholar 

  100. E.D. Palik, G.S. Picus, S. Teither, R.E. Wallis, Phys. Rev. 475 (1961)

    Google Scholar 

  101. D.G. Seiler, B.D. Bajaj, A.E. Stephens, Phys. Rev. B 16, 2822 (1977); A.V. Germaneko, G.M. Minkov, Phys. Stat. Sol. (b) 184, 9 (1994); G.L. Bir, G.E. Pikus, Symmetry and Strain–Induced effects in Semiconductors Nauka, Russia (1972). (in Russian); M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 135, K21 (1986)

    Google Scholar 

  102. J. Bouat, J.C. Thuillier, Surf. Sci. 73, 528 (1978)

    Article  ADS  Google Scholar 

  103. G.J. Rees, Phys. of Compounds, Proc. of the 13th Inter. Nat. Conf., ed. by F.G. Fumi (North Holland Company, 1976), p. 1166

    Google Scholar 

  104. P.R. Emtage, Phys. Rev. 138, A246 (1965)

    Article  ADS  Google Scholar 

  105. M. Stordeur, W. Kuhnberger, Phys. Stat. sol. (b), 69, 377 (1975); D.R. Lovett, Semimetals and Narrow-Bandgap Semiconductor (Pion Limited, UK, 1977); H. Kohler, Phys. Stat. Sol.(b), 74, 591 (1976)

    Google Scholar 

  106. M. Cardona, W. Paul, H. Brooks Helv, Acta Phys. 33, 329 (1960); A.F. Gibson in Proceeding of International School of Physics “ENRICO FERMI” course XIII, ed. by R.A Smith (Academic Press, 1963), p. 171

    Google Scholar 

  107. C.C. Wang, N.W. Ressler, Phys. Rev. 2, 1827 (1970)

    Article  ADS  Google Scholar 

  108. M. Zalazny, Phys. B 124, 352 (1984)

    Article  Google Scholar 

  109. P.C. Mathur, S. Jain, Phys. Rev. 19, 1359 (1979)

    Google Scholar 

  110. Y. Yamada, J. Phys. Japan 35, 1600 (1973); M. Singh, P.R. Wallace, S.D. Jog, E. Arushanov, J. Phys. Chem. Solids 45, 409 (1984)

    Google Scholar 

  111. S. Takaoka, K. Murase, Phys. Rev. B, Phys. Rev. B 20, 2823 (1979)

    Article  ADS  Google Scholar 

  112. G.P. Chuiko, Sov. Phys. Semi. 19(12), 1381 (1985)

    Google Scholar 

  113. V. Heine, Proc. Phys. Soc. 81, 300 (1963)

    Article  ADS  MATH  Google Scholar 

  114. J.N. Schulman, Y.C. Chang, Phys. Rev. B 24, 4445 (1981)

    Article  ADS  Google Scholar 

  115. B.R. Nag, Electron Transport in Compound Semiconductors (Springer, Heidelberg, 1980)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamakhya Prasad Ghatak .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghatak, K. (2016). The DRs in Ultrathin Films (UFs) of Heavily Doped (HD) Non-parabolic Materials. In: Dispersion Relations in Heavily-Doped Nanostructures. Springer Tracts in Modern Physics, vol 265. Springer, Cham. https://doi.org/10.1007/978-3-319-21000-1_2

Download citation

Publish with us

Policies and ethics