Skip to main content

The Hardy Space \(\mathcal{H}^{1}\) and the Case m = 1

  • Chapter
Evolution Equations of von Karman Type

Part of the book series: Lecture Notes of the Unione Matematica Italiana ((UMILN,volume 17))

  • 468 Accesses

Abstract

In this chapter we first review a number of results on the regularity of the functions N = N(u 1,  , u m ) and f = f(u) in the framework of the Hardy space \(\mathcal{H}^{1}\), and then use these results to prove the well-posedness of the von Karman equations (3) and (4) in \(\mathbb{R}^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. R. Adams, J. Fournier, Sobolev Spaces, 2nd edn. (Academic, New York, 2003)

    MATH  Google Scholar 

  2. I. Chuesov, I. Lasiecka, Von Karman Evolution Equations: Well-Posedness and Long-Time Dynamics (Springer, New York, 2010)

    Book  Google Scholar 

  3. R. Coifman, Y. Meyer, Au delà des Opérateurs Pseudo-Différentiels. Astérisque, vol. 57 (Société Mathématique de France, Paris, 1978)

    Google Scholar 

  4. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, 2002)

    Google Scholar 

  5. A. Favini, M.A. Horn, I. Lasiecka, D. Tataru, Global existence of solutions to a Von Karman system with nonlinear boundary dissipation. J. Differ Integr. Equ. 9(2), 267–294 (1996)

    MATH  MathSciNet  Google Scholar 

  6. A. Favini, M.A. Horn, I. Lasiecka, D. Tataru, Addendum to the paper “global existence of solutions to a Von Karman system with nonlinear boundary dissipation”. J. Differ. Integr. Equ. 10(1), 197–200 (1997)

    MathSciNet  Google Scholar 

  7. C. Fefferman, E.M. Stein, \(\mathcal{H}^{p}\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Google Scholar 

  8. E.H. Lieb, M. Loss, Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14 (American Mathematical Society, Providence, 2001)

    Google Scholar 

  9. J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires (Dunod-Gauthier-Villars, Paris, 1969)

    MATH  Google Scholar 

  10. E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)

    MATH  Google Scholar 

  11. E.M. Stein, G. Weiss, On the theory of harmonic functions of several variables. Acta Math. 103, 25–62 (1960)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cherrier, P., Milani, A. (2015). The Hardy Space \(\mathcal{H}^{1}\) and the Case m = 1. In: Evolution Equations of von Karman Type. Lecture Notes of the Unione Matematica Italiana, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-20997-5_6

Download citation

Publish with us

Policies and ethics