Skip to main content

Nonlinear Controller Design Based on Invariant Manifold Theory

  • Conference paper
  • First Online:
Book cover Mathematical Control Theory I

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 461))

  • 2326 Accesses

Abstract

The role of invariant manifold in nonlinear control theory is reviewed. First, stable, center-stable and center manifold algorithms to compute flows on these manifolds are presented. Next, application results of the computational methods are illustrated for optimal stabilization, optimal output regulation and periodic orbit design problems.

To Arjan van der Schaft on the occasion of his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Bittanti, P. Colaneri, Periodic Systems Filtering and Control (Springer, London, 2009)

    Google Scholar 

  2. J. Carr, Applications of Centre Manifold Theory (Springer, New York, 1981)

    Google Scholar 

  3. S.-N. Chow, J.K. Hale, Methods of Bifurcation Theory (Springer, New York, 1982)

    Google Scholar 

  4. R. Fujimoto, N. Sakamoto, The Stable Manifold Approach for Optimal Swing Up and Stabilization of an Inverted Pendulum with Input Saturation. in Proceedings of IFAC World Congress (2011)

    Google Scholar 

  5. J. Huang, W.J. Rugh, An approximation method for the nonlinear servomechanism problem. IEEE Trans. Autom. Control 37, 1395–1398 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Huang, W.J. Rugh, Stabilization on zero-error manifolds and the nonlinear servomechanism problem. IEEE Trans. Autom. Control 37, 1009–1013 (1992)

    Google Scholar 

  7. A. Isidori, C.I. Byrnes, Output regulation of nonlinear systems. IEEE Trans. Autom. Control 35, 131–140 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. A.L. Kelley, The stable, center-stable, center, center-unstable, unstable manifolds. J. Differ. Equ. 3, 546–570 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Nagata, N. Sakamoto, Y. Habaguchi, Center Manifold Method for the Orbit Design of the Restricted Three Body Problem. in 54th IEEE Conference on Decision and Control (2015). Submitted

    Google Scholar 

  10. N. Sakamoto, Case studies on the application of the stable manifold approach for nonlinear optimal control design. Automatica 49, 568–576 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Sakamoto, B. Rehák, Iterative Methods to Compute Center and Center-Stable Manifolds with Application to the Optimal Output Regulation Problem. in Proceeings of 48th IEEE Conference on Decision and Control (2011), pp. 4640–4645

    Google Scholar 

  12. N. Sakamoto, A.J. van der Schaft, Analytical approximation methods for the stabilizing solution of the Hamilton-Jacobi equation. IEEE Trans. Autom. Control 53, 2335–2350 (2008)

    Article  Google Scholar 

  13. J.M.A. Scherpen, Balancing for nonlinear systems. Syst. Control Lett. 21, 143–153 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Sijbrand, Properties of center manifolds. Trans. Am. Math. Soc. 289, 431–469 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. A.J. van der Schaft, On a state space approach to nonlinear \({H}_\infty \) control. Syst. Control Lett. 16, 1–18 (1991)

    Article  MATH  Google Scholar 

  16. A.J. van der Schaft, \(L_2\)-gain analysis of nonlinear systems and nonlinear state feedback \(H_\infty \) control. IEEE Trans. Autom. Control 37, 770–784 (1992)

    Google Scholar 

  17. J.C. Willems, Least squares stationary optimal control and the algebraic Riccati equation. IEEE Trans. Autom. Control 16, 621–634 (1971)

    Article  MathSciNet  Google Scholar 

  18. J.C. Willems, Dissipative dynamical systems-Part I, II. Arch. Ration. Mech. Anal. 45, 321–393 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noboru Sakamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sakamoto, N. (2015). Nonlinear Controller Design Based on Invariant Manifold Theory. In: Camlibel, M., Julius, A., Pasumarthy, R., Scherpen, J. (eds) Mathematical Control Theory I. Lecture Notes in Control and Information Sciences, vol 461. Springer, Cham. https://doi.org/10.1007/978-3-319-20988-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20988-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20987-6

  • Online ISBN: 978-3-319-20988-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics