Skip to main content

rTMS and Its Potential Use in Stroke Rehabilitation

  • Chapter

Abstract

TMS can stimulate cerebral cortex noninvasively and locally. The influence of rTMS on neural activity of cerebral cortex depends on the frequency of stimulation. High-frequency rTMS enhances local neural activity, whereas low-frequency rTMS suppresses the activity. These effects reflect alterations in synaptic efficiency, which are the basis of brain plasticity. It seems optimal to combine rTMS and intensive rehabilitation, since rTMS can “precondition” the brain to be more responsive to rehabilitation. With the application of rTMS, brain plasticity would be enhanced and the development of reorganization could be expected.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barker AT. The history and basic principles of magnetic nerve stimulation. Electroencephalogr Clin Neurophysiol Suppl. 1999;51:3–21.

    CAS  PubMed  Google Scholar 

  2. Pascual-Leone A, Valls-Solé J, Wassermann EM, et al. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain. 1994;117:847–58.

    Article  PubMed  Google Scholar 

  3. Wu T, Sommer M, Tergau F, et al. Lasting influence of repetitive transcranial magnetic stimulation on intracortical excitability in human subjects. Neurosci Lett. 2000;287:37–40.

    Article  CAS  PubMed  Google Scholar 

  4. Maeda F, Keenan JP, Tormos JM, et al. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res. 2000;133:425–30.

    Article  CAS  PubMed  Google Scholar 

  5. Chen R, Classen J, Gerloff C, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48:1398–403.

    Article  CAS  PubMed  Google Scholar 

  6. Maeda F, Keenan JP, Tormos JM, et al. Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol. 2000;111:800–5.

    Article  CAS  PubMed  Google Scholar 

  7. Stefan K, Kunesch E, Benecke R, et al. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol. 2002;543:699–708.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Huang YZ, Chen RS, Rothwell JC, et al. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol. 2007;118:1028–32.

    Article  CAS  PubMed  Google Scholar 

  9. Ziemann U, Hallett M, Cohen LG. Mechanisms of deafferentation-induced plasticity in human motor cortex. J Neurosci. 1998;18:7000–7.

    CAS  PubMed  Google Scholar 

  10. Inghilleri M, Conte A, Currà A, et al. Ovarian hormones and cortical excitability. An rTMS study in humans. Clin Neurophysiol. 2004;115:1063–8.

    Article  CAS  PubMed  Google Scholar 

  11. Sale MV, Ridding MC, Nordstrom MA. Factors influencing the magnitude and reproducibility of corticomotor excitability changes induced by paired associative stimulation. Exp Brain Res. 2007;181:615–26.

    Article  PubMed  Google Scholar 

  12. Kleim JA, Chan S, Pringle E, et al. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci. 2006;9:735–7.

    Article  CAS  PubMed  Google Scholar 

  13. Cheeran B, Talelli P, Mori F, et al. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol. 2008;586:5717–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abo, M., Kakuda, W. (2015). rTMS and Its Potential Use in Stroke Rehabilitation. In: Rehabilitation with rTMS. Springer, Cham. https://doi.org/10.1007/978-3-319-20982-1_1

Download citation

Publish with us

Policies and ethics