Skip to main content
  • 949 Accesses

Abstract

Retinal optical coherence tomography (OCT) has developed from a research tool to a validated instrument recommended for clinical use. For good clinical practice (GCP), this will require adherence to quality control (QC) criteria. This chapter will provide an overview of lessons learned from hands-on teaching of retinal OCT to a broad audience at a number of centers, both neurological and ophthalmological, and international teaching courses. The chapter will also highlight practical QC points as relevant to working together with a reading center for clinical studies and trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ART stands for averaging of scans. The averaging algorithm takes eye movements into account. A “smoother” but not always necessarily “better” OCT B-scan will be obtained with a high ART number.

References

  1. Frohman E, Costello F, Zivadinov R, et al. Optical coherence tomography in multiple sclerosis. Lancet Neurol. 2006;5:853–63.

    Article  PubMed  Google Scholar 

  2. Petzold A, de Boer JF, Schippling S, et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2010;9:921–32.

    Article  PubMed  Google Scholar 

  3. Saidha S, Calabresi PA. Optical coherence tomography should be part of the routine monitoring of patients with multiple sclerosis: yes. Mult Scler. 2014;20:1296–8.

    Article  PubMed  Google Scholar 

  4. Costello FE. Optical coherence tomography technologies: which machine do you want to own?”. J Neuroophthalmol. 2014;34(Suppl):S3–9.

    Article  PubMed  Google Scholar 

  5. Petzold A. Optical coherence tomography to assess neurodegeneration in multiple sclerosis. Methods Mol Biol. 2014;153 ff. doi:10.1007/7651_2014_153

    Google Scholar 

  6. Tewarie P, Balk L, Costello F, Green A, Martin R, et al. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS One. 2012;7, e34823.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Schippling S, Balk L, Costello F, et al. Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler. 2014;21(2):163–70.

    Article  PubMed  Google Scholar 

  8. Uhthoff W. Untersuchungen über den Einfluss des chronischen Alkoholismus auf das menschliche Sehorgan. Archiv für Ophthalmologie. 1886;32:95–188.

    Google Scholar 

  9. Ogden TE. Nerve fiber layer of the primate retina: morphometric analysis. Invest Ophthalmol Vis Sci. 1984;25:19–29.

    CAS  PubMed  Google Scholar 

  10. Plant GT, Perry VH. The anatomical basis of the caecocentral scotoma. New observations and a review. Brain. 1990;113(Pt 5):1441–57.

    Article  PubMed  Google Scholar 

  11. Petzold A. CSF biomarkers for improved prognostic accuracy in acute CNS disease. Neurol Res. 2007;29:691–708.

    Article  CAS  PubMed  Google Scholar 

  12. Kupersmith MJ, Anderson S, Durbin MK, Kardon RH. Scanning laser polarimetry, but not optical coherence tomography predicts permanent visual field loss in acute non-arteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2013;54:5514–9.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Petzold A, Wattjes MP, Costello F, et al. The investigation of acute optic neuritis: a review and proposed protocol. Nat Rev Neurol. 2014;10:447–58.

    Article  PubMed  Google Scholar 

  14. Balk LJ, de Vries–Knoppert WAEJ, Petzold A. A simple sign for recognizing off–axis OCT measurement beam placement in the context of multicentre studies. PLoS One. 2012;7(11), e48222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Domalpally A, Danis RP, Zhang B, et al. Quality issues in interpretation of optical coherence tomograms in macular diseases. Retina. 2009;29:775–81.

    Article  PubMed  Google Scholar 

  16. Talman LS, Bisker ER, Sackel DJ, et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol. 2010;67:749–60.

    PubMed Central  PubMed  Google Scholar 

  17. Balk L, et al. Retinal ganglion cell injury in MS occurs most rapidly early in the course of disease. Multiple Sclerosis J. 2014;20(S1):PS8.3.

    Google Scholar 

  18. Gabriele ML, Ishikawa H, Wollstein G, et al. Optical coherence tomography scan circle location and mean retinal nerve fiber layer measurement variability. Invest Ophthalmol Vis Sci. 2008;49:2315–21.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Balasubramanian M, Bowd C, Vizzeri G, et al. Effect of image quality on tissue thickness measurements obtained with spectral domain-optical coherence tomography. Opt Express. 2009;17:4019–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Petzold A, Balcer L, Calabresi P, et al. OCT in a multi–centre setting: quality control issues. In: Calabresi P, Balcer L, Frohman E, editors. Optical coherence tomography in neurological disease. New York: Cambridge University Press; 2015. p. 103–13.

    Google Scholar 

  21. Evangelou N, Konz D, Esiri MM, et al. Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain. 2001;124:1813–20.

    Article  CAS  PubMed  Google Scholar 

  22. Hariri A, Lee SY, Ruiz-Garcia H, et al. Effect of angle of incidence on macular thickness and volume measurements obtained by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:5287–91.

    Article  PubMed  Google Scholar 

  23. Hutchinson M. Optical coherence tomography should be part of the routine monitoring of patients with multiple sclerosis: commentary. Mult Scler. 2014;20:1302–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Petzold MD, PhD .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Video showing correct placement of the OCT measurement beam to the center of the pupil and artifacts related to off-center placement (Reproduced with permission from Balk et al. [14].) (MP4 148502 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Petzold, A. (2016). Optical Coherence Tomography (OCT). In: Petzold, A. (eds) Optical Coherence Tomography in Multiple Sclerosis. Springer, Cham. https://doi.org/10.1007/978-3-319-20970-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20970-8_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20969-2

  • Online ISBN: 978-3-319-20970-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics