Skip to main content

Coronary Flow Reserve

  • Chapter
  • 1439 Accesses

Abstract

The seminal concept of coronary flow reserve (CFR) was proposed experimentally by Lance K. Gould in 1974 [1]. Under normal conditions, in the absence of stenosis, coronary blood flow can increase approximately four- to sixfold to meet increasing myocardial oxygen demands. This effect is mediated by vasodilation at the arteriolar bed, which reduces vascular resistance, thereby augmenting flow. Coronary reserve is the capacity of the coronary circulation to dilate following an increase in myocardial metabolic demand and can be expressed by the difference between the hyperemic flow and the resting flow curve. In most clinical applications, hyperemia is induced pharmacologically, not via an increase in oxygen demand. A combined anatomical and physiological classification can ideally identify four separate segments in the hyperemic curve (Fig. 9.1): (1) the hemodynamically silent range of 0–40 % stenosis, which does not affect CFR (>2.5) to any detectable extent; (2) the clinically silent zone, where stenosis ranging from 40 to 70 % may marginally reduce the CFR without reaching the critical threshold required to provoke ischemia with the usual stresses; (3) the severe stenosis range (70–90 %), where critical stenosis reduces CFR less than 2.0 and myocardial ischemia is usually elicited when a stress is applied; and (4) the very severe stenosis range (>90 %), producing a marked transstenotic pressure drop at rest, with a reduction of baseline myocardial blood flow and a CFR close to 1, or even less; in these patients, the administration of a coronary vasodilator actually decreases the poststenotic flow for steal phenomena. This experimental paradigm can be accurately reproduced clinically in highly selected series of patients with single-vessel disease, no myocardial infarction, no coronary collateral circulation, normal baseline function, no left ventricular hypertrophy, and no evidence of coronary vasospasm and who are off therapy at the time of testing. In these patients, the more severe the stenosis, the more profound the impairment in CFR. The correction of the stenosis improves CFR, and perfect dilation normalizes the CFR. The perfect, predictable relationship found in the experimental animal and in a very selected patient population [2] falls apart in the clinical arena [3], where many variables can modulate the imperfect match between epicardial coronary artery stenosis and CFR. Among others, these variables include:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gould KL, Lipscomb K (1974) Effects of coronary stenosis on coronary flow reserve and resistance. Am J Cardiol 34:48–55

    Article  CAS  PubMed  Google Scholar 

  2. Uren NG, Melin JA, De Bruyne B et al (1994) Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 330:1782–1788

    Article  CAS  PubMed  Google Scholar 

  3. White CW, Wright CB, Doty DB et al (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310:819–824

    Article  CAS  PubMed  Google Scholar 

  4. Topol EJ, Nissen SE (1995) Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92:2333–2342

    Article  CAS  PubMed  Google Scholar 

  5. Varga A, Picano E, Cortigiani L et al (1996) Does stress echocardiography predict the site of future myocardial infarction? a large-scale multicenter study. J Am Coll Cardiol 28:45–51

    Article  CAS  PubMed  Google Scholar 

  6. Strauer BE (1990) The significance of coronary reserve in clinical heart disease. J Am Coll Cardiol 15:775–783

    Article  CAS  PubMed  Google Scholar 

  7. Gould KL (1991) Comparison of PET and other imaging techniques. In: Gould KL (ed) Coronary artery stenosis. Elsevier, Amsterdam

    Google Scholar 

  8. Saraste M, Koskenvuo J, Knuuti J et al (2001) Coronary flow reserve: measurement with transthoracic Doppler echocardiography is reproducible and comparable with positron emission tomography. Clin Physiol 21:114–122

    Article  CAS  PubMed  Google Scholar 

  9. Ono S, Nohara R, Kambara H, Okuda K, Kawai C (1992) Regional myocardial perfusion and glucose metabolism in experimental left bundle branch block. Circulation 85:1125–1131

    Article  CAS  PubMed  Google Scholar 

  10. Kiviniemi TO, Toikka JO, Koskenvuo JW et al (2007) Vasodilation of epicardial coronary artery can be measured with transthoracic echocardiography. Ultrasound Med Biol 33:362–370

    Article  PubMed  Google Scholar 

  11. Iliceto S, Marangelli V, Memmola C et al (1991) Transesophageal Doppler echocardiography evaluation of coronary blood flow velocity in baseline conditions and during dipyridamoleinduced coronary vasodilation. Circulation 83:61–69

    Article  CAS  PubMed  Google Scholar 

  12. Radvan J, Marwick TH, Williams MJ et al (1995) Evaluation of the extent and timing of the coronary hyperemic response to dipyridamole: a study with transesophageal echocardiography and positron emission tomography with oxygen 15 water. J Am Soc Echocardiogr 8:864–873

    Article  CAS  PubMed  Google Scholar 

  13. Hozumi T, Yoshida K, Ogata Y et al (1998) Noninvasive assessment of significant left anterior descending coronary artery stenosis by coronary flow velocity reserve with transthoracic color Doppler echocardiography. Circulation 97:1557–1562

    Article  CAS  PubMed  Google Scholar 

  14. Caiati C, Montaldo C, Zedda N et al (1999) New noninvasive method for coronary flow reserve assessment: contrast-enhanced transthoracic second harmonic echo Doppler. Circulation 99:771–778

    Article  CAS  PubMed  Google Scholar 

  15. Lim HE, Shim WJ, Rhee H et al (2000) Assessment of coronary flow reserve with transthoracic Doppler echocardiography: comparison among adenosine, standard-dose dipyridamole, and high-dose dipyridamole. J Am Soc Echocardiogr 13:264–270

    Article  CAS  PubMed  Google Scholar 

  16. Daimon M, Watanabe H, Yamagishi H et al (2001) Physiologic assessment of coronary artery stenosis by coronary flow reserve measurements with transthoracic Doppler echocardiography: comparison with exercise thallium-201 single photon emission computed tomography. J Am Coll Cardiol 37:1310–1315

    Article  CAS  PubMed  Google Scholar 

  17. Pizzuto F, Voci P, Mariano E et al (2001) Assessment of flow velocity reserve by transthoracic Doppler echocardiography and venous adenosine infusion before and after left anterior descending coronary artery stenting. J Am Coll Cardiol 38:155–162

    Article  CAS  PubMed  Google Scholar 

  18. Barbato E, Bartunek J, Wyffels E et al (2003) Effects of intravenous dobutamine on coronary vasomotion in humans. J Am Coll Cardiol 42:1596–1601

    Article  CAS  PubMed  Google Scholar 

  19. Wikström J, Grönros J, Gan LM (2008) Adenosine induces dilation of epicardial coronary arteries in mice – Relationship between coronary flow velocity reserve and coronary flow reserve in vivo using transthoracic echocardiography. Ultrasound Med Biol 34:1053–1062

    Article  PubMed  Google Scholar 

  20. Iskandrian AS, Verani MS, Heo J (1994) Pharmacologic stress testing: mechanism of action, hemodynamic responses, and results in detection of coronary artery disease. J Nucl Cardiol 1:94–111

    Article  CAS  PubMed  Google Scholar 

  21. Picano E (1992) Stress echocardiography. From pathophysiological toy to diagnostic tool. Circulation 85:1604–1612

    Article  CAS  PubMed  Google Scholar 

  22. Martin TW, Seaworth JF, Johns JP et al (1992) Comparison of adenosine, dipyridamole, and dobutamine in stress echocardiography. Ann Intern Med 116:190–196

    Article  CAS  PubMed  Google Scholar 

  23. Rossen JD, Quillen JE, Lopez AG et al (1990) Comparison of coronary vasodilation with intravenous dipyridamole and adenosine. J Am Coll Cardiol 15:373–377

    Article  Google Scholar 

  24. Dimitrow PP (2003) Transthoracic Doppler echocardiography – noninvasive diagnostic window for coronary flow reserve assessment. Cardiovasc Ultrasound 1:4

    Article  PubMed Central  PubMed  Google Scholar 

  25. Dimitrow PP, Galderisi M, Rigo F (2005) The non-invasive documentation of coronary microcirculation impairment: role of transthoracic echocardiography. Cardiovasc Ultrasound 3:18

    Article  PubMed Central  PubMed  Google Scholar 

  26. Rigo F (2005) Coronary flow reserve in stress-echo lab. From pathophysiologic toy to diagnostic tool. Cardiovasc Ultrasound 3:8

    Article  PubMed Central  PubMed  Google Scholar 

  27. Rigo F, Murer B, Ossena G et al (2008) Transthoracic echocardiographic imaging of coronary arteries: tips, traps, and pitfalls. Cardiovasc Ultrasound 6:7

    Article  PubMed Central  PubMed  Google Scholar 

  28. Rigo F, Richieri M, Pasanisi E et al (2003) Usefulness of coronary flow reserve over regional wall motion when added to dual-imaging dipyridamole echocardiography. Am J Cardiol 91:269–273

    Article  PubMed  Google Scholar 

  29. Nohtomi Y, Takeuchi M, Nagasawa K et al (2003) Simultaneous assessment of wall motion and coronary flow velocity in the left anterior descending coronary artery during dipyridamole stress echocardiography. J Am Soc Echocardiogr 17:457–463

    Article  Google Scholar 

  30. Lowenstein J, Tiano C, Marquez G et al (2003) Simultaneous analysis of wall motion and coronary flow reserve of the left anterior descending coronary artery by transthoracic Doppler echocardiography during dipyridamole stress. J Am Soc Echocardiogr 17:735–744

    Google Scholar 

  31. Chirillo F, Bruni A, De Leo A et al (2004) Usefulness of dipyridamole stress echocardiography for predicting graft patency after coronary artery bypass grafting. Am J Cardiol 93:24–30

    Article  PubMed  Google Scholar 

  32. Ascione L, De Michele M, Accadia M et al (2006) Incremental diagnostic value of ultrasonographic assessment of coronary flow reserve with high-dose dipyridamole in patients with acute coronary syndrome. Int J Cardiol 106:313–318

    Article  PubMed  Google Scholar 

  33. Lattanzi F, Picano E, Bolognese L et al (1991) Inhibition of dipyridamole-induced ischemia by antianginal therapy in humans. Correlation with exercise electrocardiography. Circulation 83:1256–1262

    Article  CAS  PubMed  Google Scholar 

  34. Sicari R, Cortigiani L, Bigi R et al (2004) Echo-persantine International Cooperative (EPIC) Study Group; Echo-Dobutamine International Cooperative (EDIC) Study Group. Prognostic value of pharmacological stress echocardiography is affected by concomitant antiischemic therapy at the time of testing. Circulation 109:2428–2431

    Article  CAS  PubMed  Google Scholar 

  35. Voci P, Pizzuto F, Mariano E et al (2002) Measurement of coronary flow reserve in the anterior and posterior descending coronary arteries by transthoracic Doppler ultrasound. Am J Cardiol 90:988–991

    Article  PubMed  Google Scholar 

  36. Ueno Y, Nakamura Y, Takashima H et al (2002) Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the right coronary artery by transthoracic Doppler echocardiography: comparison with intracoronary Doppler guidewire. J Am Soc Echocardiogr 15:1074–1079

    Article  PubMed  Google Scholar 

  37. Neglia D, Michelassi C, Trivieri MG et al (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–193

    Article  PubMed  Google Scholar 

  38. Cecchi F, Olivotto I, Gistri R et al (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349:1027–1035

    Article  CAS  PubMed  Google Scholar 

  39. Schächinger V, Britten M, Zeiher A (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101:1899–1906

    Article  PubMed  Google Scholar 

  40. Albertal M, Voskuil M, Piek JJ et al (2002) The Doppler Endpoints Balloon Angioplasty Trial Europe (DEBATE) II Study Group. Coronary flow velocity reserve after percutaneous interventions is predictive of periprocedural outcome. Circulation 105:1573–1578

    Article  CAS  PubMed  Google Scholar 

  41. Rigo F, Cortigiani L, Pasanisi E et al (2006) The additional prognostic value of coronary flow reserve on left anterior descending artery in patients with negative stress echo by wall motion criteria. A transthoracic vasodilator stress echocardiography study. Am Heart J 151:124–130

    Article  PubMed  Google Scholar 

  42. Rigo F, Sicari R, Gherardi S et al (2008) The additive prognostic value of wall motion abnormalities and coronary flow reserve during dipyridamole stress echo. Eur Heart J 29:79–88

    Article  PubMed  Google Scholar 

  43. Rigo F, Sicari R, Gherardi S et al (2007) Prognostic value of coronary flow reserve in medically treated patients with left anterior descending coronary disease with stenosis 51% to 75% in diameter. Am J Cardiol 100:1527–1531

    Article  PubMed  Google Scholar 

  44. Meimoun P, Benali T, Elmkies F et al (2008) Prognostic value of transthoracic coronary flow reserve in medically treated patients with proximal left anterior descending artery stenosis of intermediate severity. Eur J Echocardiogr 10:127–132

    Article  PubMed  Google Scholar 

  45. Cortigiani L, Rigo F, Gherardi S et al (2007) Additional prognostic value of coronary flow reserve in diabetic and nondiabetic patients with negative dipyridamole stress echocardiography by wall motion criteria. J Am Coll Cardiol 50:1354–1361

    Article  PubMed  Google Scholar 

  46. Cortigiani L, Rigo F, Gherardi S et al (2014) Prognostic Meaning of Coronary Microvascular Disease in Type 2 Diabetes MellitusA transthoracic Doppler echocardiographic study. J Am Soc Echocardiogr 27:742–748

    Article  PubMed  Google Scholar 

  47. Cortigiani L, Rigo F, Galderisi M et al (2011) Diagnostic and prognostic value of Doppler echocardiography coronary flow reserve on left anterior descending coronary artery in hypertensive and normotensive patients. Heart 5:1086–1087

    Google Scholar 

  48. Sicari R, Rigo F, Gherardi D et al (2008) The prognostic value of Doppler echocardiographic-derived coronary flow reserve is not affected by concomitant antiischemic therapy at the time of testing. Am Heart J 155:1110–1117

    Google Scholar 

  49. Cortigiani L, Rigo F, Gherardi S et al (2013) Prognostic implication of Doppler echocardiographic derived coronary flow reserve in patients with left bundle branch block. Eur Heart J 34:364–373

    Article  PubMed  Google Scholar 

  50. Rigo F, Gherardi S, Galderisi M et al (2006) The prognostic impact of coronary flow-reserve assessed by Doppler echocardiography in non-ischaemic dilated cardiomyopathy. Eur Heart J 27:1319–1323

    Article  PubMed  Google Scholar 

  51. Sicari R, Rigo F, Gherardi S et al (2008) Prognostic implications of coronary flow reserve on left anterior descending coronary artery in hypertrophic cardiomyopathy. Am J Cardiol 102:1634–1646

    Google Scholar 

  52. Tona F, Osto E, Famoso G et al (2015) Coronary microvascular dysfunction correlates with the new onset of cardiac allograft vasculopathy in heart transplant patients with normal coronary angiography. Am J Transplant

    Google Scholar 

  53. Cortigiani L, Rigo F, Gherardi S et al (2011) Coronary flow reserve during dipyridamole stress echocardiography predicts mortality. JACC Cardiovasc Imaging 5:1079–1085

    Article  Google Scholar 

  54. Cortigiani L, Rigo F, Gherardi S et al (2010) Prognostic effect of coronary flow reserve in women versus men with chest pain syndrome and normal dipyridamole stress echocardiography. Am J Cardiol 106:1703–1708

    Article  PubMed  Google Scholar 

  55. De Bono DP, Samani NJ, Spyt TJ et al (1992) Transcutaneous ultrasound measurements of blood flow in internal mammary artery to coronary artery graft. Lancet 339:379–381

    Article  PubMed  Google Scholar 

  56. Fusejima K, Takahara Y, Sudo Y et al (1990) Comparison of coronary hemodynamics in patients with internal mammary artery and saphenous vein coronary artery bypass grafts: a noninvasive approach using combined two-dimensional and Doppler echocardiography. J Am Coll Cardiol 15:131–139

    Article  CAS  PubMed  Google Scholar 

  57. De Simone L, Caso P, Severino S et al (1999) Noninvasive assessment of left and right internal mammary artery graft patency with high-frequency transthoracic echocardiography. J Am Soc Echocardiogr 12:841–849

    Article  PubMed  Google Scholar 

  58. Chirillo F, Bruni A, Balestra G et al (2001) Assessment of internal mammary artery and saphenous vein graft patency and flow reserve using transthoracic Doppler echocardiography. Heart 86:424–431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Kiviniemi TO, Saraste A, Toikka JO et al (2007) A moderate dose of red wine, but not de-alcoholized red wine increases coronary flow reserve. Atherosclerosis 195:e176–e181

    Article  CAS  PubMed  Google Scholar 

  60. Galderisi M, de Simone G, D’Errico A et al (2008) Independent association of coronary flow reserve with left ventricular relaxation and filling pressure in arterial hypertension. Am J Hypertens 21:1060–1066

    Google Scholar 

  61. Erdogan D, Yildirim I, Ciftci O et al (2007) Effects of normal blood pressure, prehypertension, and hypertension on coronary microvascular function. Circulation 115:593–599

    Article  PubMed  Google Scholar 

  62. De Bruyne B, Penicka M (2012) Coronary flow reserve and survival. JACC Cardiovasc Imaging 5:1096–1097

    Article  Google Scholar 

  63. Montalescot G, Sechtem U, Achenbach S et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34:2949–3003

    Article  PubMed  Google Scholar 

  64. Sicari R, Nihoyannopoulos P, Evangelista A et al (2009) European Association of Echocardiography. Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr 9:415–437

    Article  Google Scholar 

  65. Caiati C, Zedda N, Cadeddu M et al (2009) Detection, location, and severity assessment of left anterior descending coronary artery stenoses by means contrast-enhanced transthoracic harmonic echo Doppler. Eur Heart J 30:1797–1806

    Article  PubMed  Google Scholar 

  66. Moreo A, Gaibazzi N, Faggiano P et al (2015) Multiparametric carotid and cardiac ultrasound compared with clinical risk scores for the prediction of angiographic coronary artery disease: a multicenter prospective study. J Hypertens

    Google Scholar 

  67. Davies JE, Whinnett ZI, Francis DP et al (2011) Evidence of dominant backward-propagating “suction” wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 113:1768–1778

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Rigo PhD .

Table of Contents Video Companion

Table of Contents Video Companion

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Rigo, F., Picano, E. (2015). Coronary Flow Reserve. In: Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-20958-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20958-6_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20957-9

  • Online ISBN: 978-3-319-20958-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics