Skip to main content

Stress Echocardiography Versus Stress CMR

  • Chapter
  • 1412 Accesses

Abstract

Recently, cardiovascular magnetic resonance (CMR) imaging has emerged as a new noninvasive imaging modality providing high-resolution images in any desired plane of the heart, combined with the potential to assess and monitor left and right ventricular function [1, 2]. Although early attempts to use stress CMR, combined with dipyridamole [3] or dobutamine [4] stress, with standard (low-temporal resolution) gradient-echo techniques date back to the early 1990s, the scientific and clinical interest in stress CMR rose strikingly in the last 5 years as a consequence of technological improvements (Table 40.1). To assess cardiac function, cine MR imaging is performed with gradient-echo pulse sequences. Between 20 and 30 frames with a temporal resolution of 50 ms or less are usually sufficient to evaluate the entire cardiac cycle and are displayed in a cine loop, allowing a dynamic read with the same format, projections, segment assignment (17-segment model), and reading criteria (from 1 = normal to 4 = dyskinetic) as for stress echocardiography [5]. Gradient-echo images provide an excellent contrast between intracavitary blood and the endocardium without the use of contrast medium and provide an accurate delineation of the endocardium and epicardium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pennell DJ, Sechtem UP, Higgins CB, et al; Society for Cardiovascular Magnetic Resonance; Working Group on Cardiovascular Magnetic Resonance of the European Society of Cardiology (2004) Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J 25:1940–1965

    Google Scholar 

  2. Hendel RC, Patel MR, Kramer, CM, et al; American College of Radiology; Society of Cardiovascular Computed Tomography; Society for Cardiovascular Magnetic Resonance; American Society of Nuclear Cardiology; North American Society for Cardiac Imaging; Society for Cardiovascular Angiography and Interventions; Society of Interventional Radiology (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging. A report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group. J Am Coll Radiol 3:751–771

    Google Scholar 

  3. Pennell DJ, Underwood SR, Ell PJ et al (1990) Dipyridamole magnetic resonance imaging: a comparison with thallium-201 emission tomography. Br Heart J 64:362–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Pennell DJ, Underwood SR, Manzara CC et al (1992) Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 70:34–40

    Article  CAS  PubMed  Google Scholar 

  5. Cerqueira MD, Weissman NJ, Dilsizian V et al; American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging 18:539–542

    Google Scholar 

  6. Vincenti G, Monney P, Chaptinel J et al (2014) Compressed sensing single-breath hold CMR for fast quantitation of left ventricular function, volumes, and mass. JACC Cardiovasc Imaging 7:882–9

    Article  PubMed  Google Scholar 

  7. Schwitter J (2007) Perfusion cardiovascular magnetic resonance: will it replace SPECT? Dialog Cardiovasc Med 12:114–22

    Google Scholar 

  8. Schwitter J, Nanz D, Kneifel S et al (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103:2230–5

    Article  CAS  PubMed  Google Scholar 

  9. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–53

    Article  CAS  PubMed  Google Scholar 

  10. Thygesen K, Alpert JS, White HD, Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction (2007) Universal definition of myocardial infarction. Circulation 116:2634–53

    Article  PubMed  Google Scholar 

  11. Schwitter J, Saeed M, Wendland MF et al (1997) Influence of severity of myocardial injury on distribution of macromolecules: extravascular versus intravascular gadolinium-based magnetic resonance contrast agents. J Am Coll Cardiol 30:1086–94

    Article  CAS  PubMed  Google Scholar 

  12. Kwong RY, Chan AK, Brown KA et al (2006) Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 113:2733–43

    Article  PubMed  Google Scholar 

  13. Piccini D, Monney D, Sierro C, Coppo S, Bonanno G, van Heeswijk R et al (2014) Respiratory self-navigated post-contrast whole-heart coronary MR angiography: initial experience in patients. Radiology 270:378–86

    Article  PubMed  Google Scholar 

  14. Monney P, Staeler N, Clau M et al (2011) Cardiac MRI in the follow-up of congenital cardiomyopathy patients. Rev Med Suisse 7:1194–9

    CAS  PubMed  Google Scholar 

  15. Hauser TH, Manning WJ (2008) The promise of whole-heart coronary MRI. Curr Cardiol Rep 10:46–50

    Article  PubMed  Google Scholar 

  16. Ryf S, Kissinger KV, Spiegel MA et al (2004) Spiral MR myocardial tagging. Magn Reson Med 51:237–42

    Article  PubMed  Google Scholar 

  17. Epstein FH (2007) MRI of left ventricular function. J Nucl Cardiol 14:729–44

    Article  PubMed  Google Scholar 

  18. Giang TH, Nanz D, Coulden R et al (2004) Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multi-centre experience. Eur Heart J 25:1657–65

    Article  CAS  PubMed  Google Scholar 

  19. Schwitter J (2006) Myocardial perfusion imaging by cardiac magnetic resonance. J Nucl Cardiol 13:841–54

    Article  PubMed  Google Scholar 

  20. Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K et al (2012) Superior diagnostic performance of perfusion-cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: the secondary endpoints of the multicenter multivendor MR-IMPACT II (Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial). J Cardiovasc Magn Reson 14:61

    Article  PubMed Central  PubMed  Google Scholar 

  21. Daftari Besheli L, Aran S, Shaqdan K, Kay J et al (2014) Current status of nephrogenic systemic fibrosis. Clin Radiol 69:661–8

    Article  CAS  PubMed  Google Scholar 

  22. Schwitter J (2012) CMR-update, 2nd edn. Schwitter, J, Lausanne, www.herz-mri.ch

    Google Scholar 

  23. Bruder O, Wagner A, Lombardi M et al (2013) European cardiovascular Magnetic resonance Registry (EuroCMR) registry – multinational results from 57 centers in 15 countries. J Cardiovasc Magn Reson 15:9–18

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bruder O, Schneider S, Nothnagel D, Pilz G, Lombardi M, Sinha A et al (2011) Acute adverse reactions to gadolinium-based contrast agents in CMR: multicenter experience with 17,676 patients from the Euro CMR registry. JACC Cardiovasc Imaging 4:1171–6

    Article  PubMed  Google Scholar 

  25. Nagel E, Fleck E (1999) Functional MRI in ischemic heart disease based on detection of contraction abnormalities. J Magn Reson Imaging 10:411–7

    Article  CAS  PubMed  Google Scholar 

  26. Schwitter J, Wacker CM, van Rossum AC, Lombardi M, Al-Saadi N, Ahlstrom H et al (2008) MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 29:480–9

    Article  PubMed  Google Scholar 

  27. Jahnke C, Nagel E, Gebker R, Kokocinski T, Kelle S, Manka R et al (2007) Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation 115:1769–76

    Article  PubMed  Google Scholar 

  28. Bodi V, Sanchis J, Lopez-Lereu MP et al (2007) Prognostic value of dipyridamole stress cardiovascular magnetic resonance imaging in patients with known or suspected coronary artery disease. J Am Coll Cardiol 50:1174–9

    Article  PubMed  Google Scholar 

  29. Pingitore A, Lombardi M, Scattini B et al (2008) Head to head comparison between perfusion and function during accelerated high-dose dipyridamole magnetic resonance stress for the detection of coronary artery disease. Am J Cardiol 101:8–14

    Article  CAS  PubMed  Google Scholar 

  30. Sicari R, Nihoyannopoulos P, Evangelista A, et al; European Association of Echocardiography (2008) Stress echocardiography consensus statement of the European Association of Echocardiography. Eur J Echocardiogr 9:415–437

    Google Scholar 

  31. Schwitter J, DeMarco T, Kneifel S et al (2000) Magnetic resonance-based assessment of global coronary flow and flow reserve and its relation to left ventricular functional parameters: a comparison with positron emission tomography. Circulation 101:2696–702

    Article  CAS  PubMed  Google Scholar 

  32. Di Carli M, Czernin J, Hoh CK et al (1995) Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 91:1944–51

    Article  PubMed  Google Scholar 

  33. Schwitter J (2005) Myocardial perfusion in ischemic heart disease. In: Higgins CB, de Roos A (eds) MRI and CT of the cardiovascular system. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  34. Coelho-Filho OR, Seabra LF, Mongeon F-P, Abdullah SM, Francis SA, Blankstein R, Di Carli MF, Jerosch-Herold M, Kwong RY (2011) Stress myocardial perfusion imaging by CMR provides strong prognostic value to cardiac events regardless of patient’s sex. JACC Cardiovasc Imaging 4:850–61

    Article  PubMed Central  PubMed  Google Scholar 

  35. Hundley W, Hamilton C, Thomas M, Herrington D, Salido T, Kitzman D, Little W, Link K (1999) Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation 100:1697–702

    Article  CAS  PubMed  Google Scholar 

  36. Nagel E, Lehmkuhl HB, Bocksch W et al (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99:763–70

    Article  CAS  PubMed  Google Scholar 

  37. Wahl A, Paetsch I, Gollesch A et al (2004) Safety and feasibility of high-dose dobutamineatropine stress cardiovascular magnetic resonance for diagnosis of myocardial ischaemia: experience in 1000 consecutive cases. Eur Heart J 25:1230–6

    Article  PubMed  Google Scholar 

  38. Picano E, Mathias W Jr, Pingitore A et al (1994) Safety and tolerability of dobutamineatropine stress echocardiography: a prospective, multicentre study. Echo Dobutamine International Cooperative Study Group. Lancet 344:1190–2

    Article  CAS  PubMed  Google Scholar 

  39. Varga A, Garcia MA, Picano E, International Stress Echo Complication Registry (2006) Safety of stress echocardiography (from the International Stress Echo Complication Registry). Am J Cardiol 98:541–3

    Article  PubMed  Google Scholar 

  40. Schwitter J, Wacker CM, Wilke N et al (2013) MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J 34:775–81

    Article  PubMed  Google Scholar 

  41. Wagner A, Mahrholdt H, Holly TA et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–9

    Article  PubMed  Google Scholar 

  42. Wellnhofer E, Olariu A, Klein C et al (2004) Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 109:2172–4

    Article  PubMed  Google Scholar 

  43. Bodi V, Sanchis J, Lopez-Lereu MP et al (2009) Prognostic and therapeutic implications of dipyridamole stress cardiovascular magnetic resonance on the basis of the ischemic cascade. Heart 95:49–55

    Article  CAS  PubMed  Google Scholar 

  44. Mordi I, Stanton T, Carrick D et al (2014) Comprehensive dobutamine stress CMR versus echocardiography in LBBB and suspected coronary artery disease. JACC Cardiovasc Imaging 7:490–8

    Article  PubMed  Google Scholar 

  45. Hojjati MR, Muthupillai R, Wilson JM et al (2014) Assessment of perfusion and wall-motion abnormalities and transient ischemic dilation in regadenoson stress cardiac magnetic resonance perfusion imaging. Int J Cardiovasc Imaging 2014(30):949–57

    Article  Google Scholar 

  46. Kawel-Boehm N, Bremerich J (2014) Magnetic resonance stress imaging of myocardial perfusion and wall motion. J Thorac Imaging 29:30–7

    Article  PubMed  Google Scholar 

  47. Nandalur KR, Dwamena BA, Choudhri AF et al (2007) Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol 50:1343–53

    Article  PubMed  Google Scholar 

  48. Hamon M, Fau G, Nee G et al (2010) Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. J Cardiovasc Magn Reson 12:29

    Article  PubMed Central  PubMed  Google Scholar 

  49. Greenwood JP, Maredia N, Younger JF, Nixon J, Everett CC et al (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379:453–60

    Article  PubMed Central  PubMed  Google Scholar 

  50. Lipinski M, McVey C, Berger J et al (2013) Prognostic value of stress cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease: a systematic review and meta-analysis. J Am Coll Cardiol 62:826–38

    Article  PubMed  Google Scholar 

  51. Knuesel PR, Nanz D, Wyss C, Buechi M, Kaufmann PA, von Schulthess GK et al (2003) Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation 108:1095–100

    Article  PubMed  Google Scholar 

  52. Nichols M, Townsend N, Leal J, Gray A, Scarborough P et al (2012) European Cardiovascular Disease Statistics. European Heart Network, Brussels, European Society of Cardiology, Sophia Antipolis

    Google Scholar 

  53. Moschetti K, Favre D, Pinget C, Pilz G, Petersen SE, Wagner A et al (2014) Comparative cost-effectiveness analyses of cardiovascular magnetic resonance and coronary angiography combined with fractional flow reserve for the diagnosis of coronary artery disease. J Cardiovasc Magn Reson 16:13

    Article  PubMed Central  PubMed  Google Scholar 

  54. Walker S, Girardin F, McKenna C, Ball SG, Nixon J, Plein S et al (2013) Cost-effectiveness of cardiovascular magnetic resonance in the diagnosis of coronary heart disease: an economic evaluation using data from the CE-MARC study. Heart 99:873–81

    Article  PubMed  Google Scholar 

  55. Schwitter J, Kanal E, Schmitt M, Anselme F, Albert T, Hayes DL et al (2013) Impact of the Advisa MRI™ Pacing System on the diagnostic quality of cardiac MR images and contraction patterns of cardiac muscle during scans: Advisa MRI randomized clinical multicenter study results. Heart Rhythm 10:864–72

    Article  PubMed  Google Scholar 

  56. Wolk MJ, Bailey SR, Doherty JU et al; American College of Cardiology Foundation Appropriate Use Criteria Task Force (2014) ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol 63:380–406

    Google Scholar 

  57. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Budaj CAA, Bugiardini R et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the Management of Stable Coronary Artery Disease of the European Society of Cardiology. Eur Heart J 34:2949–3003

    Article  PubMed  Google Scholar 

  58. McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 14:803–69

    Article  CAS  PubMed  Google Scholar 

  59. Yancy CW, Jessup M, Bozkurt B et al; American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62:e147–239

    Google Scholar 

  60. Windecker S, Kohl P, Alfonso F et al (2014) 2014 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J 35:2541–2619

    Google Scholar 

  61. Fihn SD, Gardin JM, Abrams J et al (2012) 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 60:e44–164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Schwitter, J., Picano, E. (2015). Stress Echocardiography Versus Stress CMR. In: Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-20958-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20958-6_40

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20957-9

  • Online ISBN: 978-3-319-20958-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics