Skip to main content

Stress Echocardiography After Cardiac Transplantation

  • Chapter
Stress Echocardiography
  • 1397 Accesses

Abstract

Cardiac transplantation is an increasingly important treatment for end-stage cardiac disease, but rejection continues to be a major complication [1]. Rejection can be either acute or chronic (Table 35.1). Acute rejection is a major problem in the first year following cardiac transplantation. It is characterized by subtle or overt myocardial dysfunction, with normal epicardial coronary arteries. However, the coronary flow reserve, a pathophysiological hallmark of microvascular disease (as has been described in other situations such as syndrome X or hypertension with normal coronary arteries [2, 3]), may be impaired, particularly in severe rejections [4, 5]. In particular, during acute cardiac rejection, the reversible reduction of coronary reserve could be the result of the limitation of vasodilatation due to functional abnormalities such as metabolically or immunologically related decreased responsiveness of the vascular wall to vasodilator stimuli or to structural abnormalities, such as interstitial edema or cellular infiltration [4]. Immunosuppressive treatment can resolve structural and functional abnormalities and restore the normal coronary flow reserve [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunt SA, Haddad F (2008) The changing face of heart transplantation. J Am Coll Cardiol 52:587–598

    Article  PubMed  Google Scholar 

  2. Picano E, Pálinkás A, Amyot R (2001) Diagnosis of myocardial ischemia in hypertensive patients. J Hypertens 19:1177–1183

    Article  CAS  PubMed  Google Scholar 

  3. Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356:830–840

    Article  CAS  PubMed  Google Scholar 

  4. Nitenberg A, Tavolaro O, Loisance D et al (1989) Severe impairment of coronary reserve during rejection in patients with orthotopic heart transplant. Circulation 79:59–65

    Article  CAS  PubMed  Google Scholar 

  5. Osto E, Tona F, Angelini A et al (2009) Determinants of coronary flow reserve in heart transplantation: a study performed with contrast-enhanced echocardiography. J Heart Lung Transplant 28:453–460

    Article  PubMed  Google Scholar 

  6. Tona F, Caforio AL, Montisci R et al (2006) Coronary flow reserve by contrast-enhanced echocardiography: a new noninvasive diagnostic tool for cardiac allograft vasculopathy. Am J Transplant 6:998–1003

    Article  CAS  PubMed  Google Scholar 

  7. Tona F, Caforio AL, Montisci R et al (2006) Coronary flow velocity pattern and coronary flow reserve by contrast enhanced transthoracic echocardiography predict long-term outcome in heart transplantation. Circulation 114(Suppl):I49–I55

    PubMed  Google Scholar 

  8. Hirohata A, Nakamura M, Waseda K, Honda Y, Lee DP, Vagelos RH et al (2007) Changes in coronary anatomy and physiology after heart transplantation. Am J Cardiol 99:1603–1607

    Article  PubMed  Google Scholar 

  9. Moien-Afshari F, Skarsgard PL, McManus BM, Laher I (2004) Cardiac transplantation and resistance artery myogenic tone. Can J Physiol Pharmacol 82:840–848

    Article  CAS  PubMed  Google Scholar 

  10. Fearon WF, Hirohata A, Nakamura M et al (2006) Discordant changes in epicardial and microvascular coronary physiology after cardiac transplantation: Physiologic Investigation for Transplant Arteriopathy II (PITA II) study. J Heart Lung Transplant 25:765–767

    Article  PubMed  Google Scholar 

  11. Rahmani M, Cruz RP, Granville DJ, McManus BM (2006) Allograft vasculopathy versus atherosclerosis. Circ Res 99:801–815

    Article  CAS  PubMed  Google Scholar 

  12. Schwarzacher SP, Uren NG, Ward MR et al (2000) Determinants of coronary remodeling in transplant coronary disease: a simultaneous intravascular ultrasound and Doppler flow study. Circulation 101:1384–1389

    Article  CAS  PubMed  Google Scholar 

  13. St Goar FG, Pinto FJ, Alderman EL et al (1992) Intracoronary ultrasound in cardiac transplant recipients. In vivo evidence of “angiographically silent” intimal thickening. Circulation 85:979–987

    Article  CAS  PubMed  Google Scholar 

  14. Klauss V, Mudra H, Uberfuhr P et al (1995) Intraindividual variability of cardiac allograft vasculopathy as assessed by intravascular ultrasound. Am J Cardiol 76:463–466

    Article  CAS  PubMed  Google Scholar 

  15. Kofoed KF, Czernin J, Johnson J et al (1997) Effects of cardiac allograft vasculopathy on myocardial blood flow, vasodilatory capacity, and coronary vasomotion. Circulation 95:600–606

    Article  CAS  PubMed  Google Scholar 

  16. Muehling OM, Wilke NM, Panse P et al (2003) Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant arteriopathy assessed by magnetic resonance imaging. J Am Coll Cardiol 42:1054–1060

    Article  PubMed  Google Scholar 

  17. Fearon WF, Nakamura M, Lee DP, Rezaee M et al (2003) Simultaneous assessment of fractional and coronary flow reserves in cardiac transplant recipients: Physiologic Investigation for Transplant Arteriopathy (PITA Study). Circulation 108:1605–1610

    Article  PubMed  Google Scholar 

  18. Weis M, Hartmann A, Olbrich HG, Hör G, Zeiher AM (1998) Prognostic significance of coronary flow reserve on left ventricular ejection fraction in cardiac transplant recipients. Transplantation 65:103–108

    Article  CAS  PubMed  Google Scholar 

  19. Rodrigues AC, Frimm C, Bacal F et al (2005) Coronary flow reserve impairment predicts cardiac events in heart transplant patients with preserved left ventricular function. Int J Cardiol 103:201–206

    Article  PubMed  Google Scholar 

  20. Smart FW, Ballantyne CM, Cocanougher B et al (1991) Insensitivity of noninvasive tests to detect coronary artery vasculopathy after heart transplant. Am J Cardiol 67:243–247

    Article  CAS  PubMed  Google Scholar 

  21. Mairesse GH, Marwick TH, Melin JA et al (1995) Use of exercise electrocardiography, technetium-99m-MIBI perfusion tomography, and two-dimensional echocardiography for coronary disease surveillance in a low-prevalence population of heart transplant recipients. J Heart Lung Transplant 14:222–229

    CAS  PubMed  Google Scholar 

  22. Cohn JM, Wilensky RL, O’Donnell JA et al (1996) Exercise echocardiography, angiography, and intracoronary ultrasound after cardiac transplantation. Am J Cardiol 77:1216–1219

    Article  CAS  PubMed  Google Scholar 

  23. Collings CA, Pinto FJ, Valantine HA et al (1994) Exercise echocardiography in heart transplant recipients: a comparison with angiography and intracoronary ultrasonography. J Heart Lung Transplant 13:604–613

    CAS  PubMed  Google Scholar 

  24. Ciliberto GR, Mangiavacchi M, Banfi F et al (1993) Coronary artery disease after heart transplantation: non-invasive evaluation with exercise thallium scintigraphy. Eur Heart J 14:226–229

    Article  CAS  PubMed  Google Scholar 

  25. Spes CH, Klauss V, Rieber J et al (1999) Functional and morphological findings in heart transplant recipients with a normal coronary angiogram: an analysis by dobutamine stress echocardiography, intracoronary Doppler and intravascular ultrasound. J Heart Lung Transplant 1:391–398

    Article  Google Scholar 

  26. Yeung AC, Davis SF, Hauptman PJ et al (1995) Multicenter Intravascular Ultrasound Transplant Study Group. Incidence and progression of transplant coronary artery disease over 1 year: results of a multicenter trial with use of intravascular ultrasound. J Heart Lung Transplant 14:S215–S220

    CAS  PubMed  Google Scholar 

  27. Vatner DE, Lavallee M, Amano J et al (1985) Mechanisms of supersensitivity to sympathomimetic amines in the chronically denervated heart of the conscious dog. Circ Res 57:55–64

    Article  CAS  PubMed  Google Scholar 

  28. Ciliberto GR, Mascarello M, Gronda E et al (1994) Acute rejection after heart transplantation: noninvasive echocardiographic evaluation. J Am Coll Cardiol 23:1156–1161

    Article  CAS  PubMed  Google Scholar 

  29. Ciliberto GR, Pingitore A, Mangiavacchi M et al (1996) The clinical value of blunting of cyclic gray level variation for the detection of acute cardiac rejection: a two-dimensional, Doppler, and videodensitometric ultrasound study. J Am Soc Echocardiogr 27:142–148

    Google Scholar 

  30. Angermann CE, Nassau K, Stempfle HU et al (1997) Recognition of acute cardiac allograft rejection from serial integrated backscatter analyses in human orthotopic heart transplant recipients. Comparison with conventional echocardiography. Circulation 95:140–150

    Article  CAS  PubMed  Google Scholar 

  31. Dandel M, Hummel M, Müller J et al (2001) Reliability of tissue Doppler wall motion monitoring after heart transplantation for replacement of invasive routine screenings by optimally timed cardiac biopsies and catheterizations. Circulation 104(12 Suppl 1):I184–I191

    CAS  PubMed  Google Scholar 

  32. Marciniak A, Eroglu E, Marciniak M et al (2007) The potential clinical role of ultrasonic strain and strain rate imaging in diagnosing acute rejection after heart transplantation. Eur J Echocardiogr 8:213–221

    Article  PubMed  Google Scholar 

  33. Sera F, Kato TS, Farr M et al (2014) Left ventricular longitudinal strain by speckle-tracking echocardiography is associated with treatment-requiring cardiac allograft rejection. J Card Fail 20:359–364

    Article  PubMed  Google Scholar 

  34. Bader FM, Islam N, Mehta NA et al (2011) Noninvasive diagnosis of cardiac allograft rejection using echocardiography indices of systolic and diastolic function. Transplant Proc 43:3877–3881

    Article  CAS  PubMed  Google Scholar 

  35. Picano E, De Pieri G, Salerno JA et al (1990) Electrocardiographic changes suggestive of myocardial ischemia elicited by dipyridamole infusion in acute rejection early after heart transplantation. Circulation 81:72–77

    Article  CAS  PubMed  Google Scholar 

  36. Haddad F, Khazanie P, Deuse T et al (2012) Clinical and functional correlates of early microvascular dysfunction after heart transplantation. Circ Heart Fail 5:759–768

    Article  PubMed  Google Scholar 

  37. Akosah KO, McDaniel S, Hanrahan JS et al (1998) Dobutamine stress echocardiography early after heart transplantation predicts development of allograft coronary artery disease and outcome. J Am Coll Cardiol 31:1607–1614

    Article  CAS  PubMed  Google Scholar 

  38. Sade LE, Eroglu S, Yüce D et al (2014) Follow-up of heart transplant recipients with serial echocardiographic and dobutamine stress echocardiography to detect cardiac allograft vasculopathy. J Am Soc Echocardiogr 227:531–539

    Article  Google Scholar 

  39. Ciliberto GR, Massa D, Mangiavacchi M et al (1993) High-dose dipyridamole echocardiography test in coronary artery disease after heart transplantation. Eur Heart J 14:48–52

    Article  CAS  PubMed  Google Scholar 

  40. Ciliberto GR, Parodi O, Cataldo G et al (2003) Prognostic value of contractile response during high-dose dipyridamole echocardiography test in heart transplant recipients. J Heart Lung Transplant 22:526–532

    Article  PubMed  Google Scholar 

  41. Akosah KO, Mohanty PK, Funai JT et al (1994) Noninvasive detection of transplant coronary artery disease by dobutamine stress echocardiography. J Heart Lung Transplant 13:1024–1038

    CAS  PubMed  Google Scholar 

  42. Derumeaux G, Redonnet M, Mouton-Schleifer D et al (1995) Dobutamine stress echocardiography in orthotopic heart transplant recipients. VACOMED Research Group. J Am Coll Cardiol 25:1665–1672

    Article  CAS  PubMed  Google Scholar 

  43. Akosah K, Olsovsky M, Mohanty PK et al (1995) Dobutamine stress-induced angina in patients with denervated cardiac transplants. Clinical and angiographic correlates. Chest 108:695–700

    Article  CAS  PubMed  Google Scholar 

  44. Spes CH, Mudra H, Schnaack SD et al (1996) Dobutamine stress echocardiography for noninvasive diagnosis of cardiac allograft vasculopathy: a comparison with angiography and intravascular ultrasound. Am J Cardiol 78:168–174

    Article  CAS  PubMed  Google Scholar 

  45. Spes CH, Klauss V, Mudra H et al (1999) Diagnostic and prognostic value of serial dobutamine stress echocardiography for noninvasive assessment of cardiac allograft vasculopathy: a comparison with coronary angiography and intravascular ultrasound. Circulation 100:509–515

    Article  CAS  PubMed  Google Scholar 

  46. Derumeaux G, Redonnet M, Soyer R et al (1998) Assessment of the progression of cardiac allograft vasculopathy by dobutamine stress echocardiography. J Heart Lung Transplant 17:259–267

    CAS  PubMed  Google Scholar 

  47. Rodrigues AC, Bacal F, Medeiros CC et al (2005) Noninvasive detection of coronary allograft vasculopathy by myocardial contrast echocardiography. J Am Soc Echocardiogr 18:116–121

    Article  PubMed  Google Scholar 

  48. Sade LE, Sezgin A, Eroglu S et al (2008) Dobutamine stress echo in the assessment of cardiac allograft vasculopathy in asymptomatic recipients. Transplant Proc 40:267–270

    Article  PubMed  Google Scholar 

  49. Eroglu E, D’hooge J, Sutherland GR et al (2008) Quantitative dobutamine stress echocardiography for the early detection of cardiac allograft vasculopathy in heart transplant recipients. Heart 94, e3

    Article  CAS  PubMed  Google Scholar 

  50. Larsen RL, Applegate PM, Dyar DA et al (1998) Dobutamine stress echocardiography for assessing coronary artery disease after transplantation in children. J Am Coll Cardiol 32:515–520

    Article  CAS  PubMed  Google Scholar 

  51. Pahl E, Crawford SE, Swenson JM et al (1999) Dobutamine stress echocardiography: experience in pediatric heart transplant recipients. J Heart Lung Transplant 18:725–732

    Article  CAS  PubMed  Google Scholar 

  52. Lewis JF, Selman SB, Murphy JD et al (1997) Dobutamine echocardiography for prediction of ischemic events in heart transplant recipients. J Heart Lung Transplant 16:390–393

    CAS  PubMed  Google Scholar 

  53. Bacal F, Moreira L, Souza G et al (2004) Dobutamine stress echocardiography predicts cardiac events or death in asymptomatic patients long-term after heart transplantation: 4-year prospective evaluation. J Heart Lung Transplant 23:1238–1244

    Article  PubMed  Google Scholar 

  54. Mehra MR, Ventura HO, Stapleton DD, Smart FW, Collins TC, Ramee SR (1995) Presence of severe intimal thickening by intravascular ultrasonography predicts cardiac events in cardiac allograft vasculopathy. J Heart Lung Transplant 14:632–639

    CAS  PubMed  Google Scholar 

  55. Tona F, Osto E, Tarantini G et al (2010) Coronary flow reserve by transthoracic echocardiography predicts epicardial intimal thickening in cardiac allograft vasculopathy. Am J Transplant 10:1668–1676

    Article  CAS  PubMed  Google Scholar 

  56. Dimitrow PP, Galderisi M, Rigo F (2005) The non-invasive documentation of coronary microcirculation impairment: role of transthoracic echocardiography. Cardiovasc Ultrasound 3:18

    Article  PubMed Central  PubMed  Google Scholar 

  57. Preumont N, Berkenboom G, Vachiery J et al (2000) Early alterations of myocardial blood flow reserve in HTx recipients with angiographically normal coronary arteries. J Heart Lung Transplant 19:538–545

    Article  CAS  PubMed  Google Scholar 

  58. Hartmann A, Weis M, Olbrich HG et al (1994) Endothelium-dependent and endothelium-independent vasomotion in large coronary arteries and in the microcirculation after cardiac transplantation. Eur Heart J 15:1486–1493

    CAS  PubMed  Google Scholar 

  59. Zaroff JG, Rosengard BR, Armstrong WF et al (2002) Consensus conference report: maximizing use of organs recovered from the cadaver donor: cardiac recommendations, March 28–29, 2001, Crystal City, Va. Circulation 106:836–841

    Article  PubMed  Google Scholar 

  60. Arpesella G, Gherardi S, Bombardini T, Picano E (2006) Recruitment of aged donor heart with pharmacological stress echo. A case report. Cardiovasc Ultrasound 4:3

    Article  PubMed Central  PubMed  Google Scholar 

  61. Berman M, Ali A, Ashley E et al (2010) Is stress cardiomyopathy the underlying cause of ventricular dysfunction associated with brain death? J Heart Lung Transplant 29:957–965

    Article  PubMed  Google Scholar 

  62. Leone O, Gherardi S, Targa L et al (2009) Stress echocardiography as a gatekeeper to donation in aged marginal donor hearts: anatomic and pathologic correlations of abnormal stress echocardiography results. J Heart Lung Transplant 28:1141–1149

    Article  PubMed  Google Scholar 

  63. Bombardini T, Gherardi S, Arpesella G et al (2011) Favorable short-term outcome of transplanted hearts selected from marginal donors by pharmacological stress echocardiography. J Am Soc Echocardiogr 24:353–362

    Article  PubMed  Google Scholar 

  64. Fine NM, Pellikka PA (2011) Pharmacologic stress echocardiography for the assessment of organ suitability for heart transplantation: casting a broader net in search of donors. J Am Soc Echocardiogr 24:363–366

    Article  PubMed  Google Scholar 

  65. Costanzo MR, Dipchand A, Starling R et al; International Society of Heart and Lung Transplantation Guidelines (2010) The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant 29:914–956

    Google Scholar 

  66. Linee Guida Adonhers. Centro Nazionale Trapianti. Ministero della salute. www.trapianti.salute.gov.it/ (Accessed August 20th, 2015)

  67. Badano LP, Miglioranza MH, Edvardsen T et al (2015) European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation. Eur Heart J Cardiovasc imaging pii:jev139. [Epub ahead of print]

    Google Scholar 

  68. Chirakarnjanakorn S, Starling RC, Popović ZB, Griffin BP, Desai MY (2015) Dobutamine stress echocardiography during follow-up surveillance in heart transplant patients: Diagnostic accuracy and predictors of outcomes. J Heart Lung Transplant 34:710–717

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyla Elif Sade .

Table of Contents Video Companion

Table of Contents Video Companion

  • See illustrative case numbers 36, 37, and 38 by Prof Sade, MD, Ankara, Turkey, and case numbers 39 and 40 by Tonino Bombardini, MD, PhD, Pisa, Italy.

  • See also, in the section Nuovo Cinema Paradiso remastered, the short movie: “A novel silver heart from National Research Council,” by Tonino Bombardini, MD, PhD, Pisa, Italy.

  • Springer Extra Materials available at http://extras.springer.com/2015/978-3-319-20957-9

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Sade, L.E., Picano, E. (2015). Stress Echocardiography After Cardiac Transplantation. In: Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-20958-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20958-6_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20957-9

  • Online ISBN: 978-3-319-20958-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics