Skip to main content

Anatomical and Functional Targets of Stress Testing

  • Chapter
Stress Echocardiography

Abstract

The principle of stress under controlled conditions derives from the Industrial Revolution: metallic materials undergo endurance tests to identify the breaking load. This approach identifies structural defects, which – although occult in the resting or static state – might show up under real-life loading conditions, leading to a dysfunction of the industrial product. In the same way, a patient with normal findings at rest undergoes a stress test to identify any potential vulnerability of the myocardium to ischemia, if there is clinical suspicion of ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marzilli M, Merz CN, Boden WE et al (2012) Obstructive coronary atherosclerosis and ischemic heart disease: an elusive link! J Am Coll Cardiol 60:951–956

    Article  PubMed  Google Scholar 

  2. Marcus ML (1983) The coronary circulation in health and disease. McGraw Hill, New York, pp 65–92

    Google Scholar 

  3. Gould KL, Lipscomb K (1974) Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 34:48–55

    Article  CAS  PubMed  Google Scholar 

  4. Maseri A (1987) Role of coronary artery spasm in symptomatic and silent myocardial ischemia. J Am Coll Cardiol 9:249–262

    Article  CAS  PubMed  Google Scholar 

  5. Gorlin R, Fuster V, Ambrose JA (1986) Anatomic-physiologic links between acute coronary syndromes. Circulation 74:6–9

    Article  CAS  PubMed  Google Scholar 

  6. Epstein SE, Cannon RO 3rd (1986) Site of increased resistance to coronary flow in patients with angina pectoris and normal epicardial coronary arteries. J Am Coll Cardiol 8:459–461

    Article  CAS  PubMed  Google Scholar 

  7. L’Abbate A, Marzilli M, Ballestra AM et al (1980) Opposite transmural gradients of coronary resistance and extravascular pressure in the working dog’s heart. Cardiovasc Res 14:21–29

    Article  PubMed  Google Scholar 

  8. Ross J Jr (1989) Mechanisms of regional ischemia and antianginal drug action during exercise. Prog Cardiovasc Dis 31:455–466

    Article  PubMed  Google Scholar 

  9. Gallagher KP, Matsuzaki M, Koziol JA et al (1984) Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 247:H727–H738

    CAS  PubMed  Google Scholar 

  10. Marcus ML, White CW, Kirchner PT (1986) Isn’t it time to reevaluate the sensitivity of noninvasive approaches for the diagnosis of coronary artery disease? J Am Coll Cardiol 8:1033–1034

    Article  CAS  PubMed  Google Scholar 

  11. White CW, Wright CB, Doty DB et al (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310:819–824

    Article  CAS  PubMed  Google Scholar 

  12. Uren NG, Melin JA, De Bruyne B et al (1994) Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 330:1782–1788

    Article  CAS  PubMed  Google Scholar 

  13. Legrand V, Mancini GB, Bates ER et al (1986) Comparative study of coronary flow reserve, coronary anatomy and results of radionuclide exercise tests in patients with coronary artery disease. J Am Coll Cardiol 8:1022–1032

    Article  CAS  PubMed  Google Scholar 

  14. Wilson RF, Marcus ML, Christensen BV et al (1991) Accuracy of exercise electrocardiography in detecting physiologically significant coronary arterial lesions. Circulation 83:412–421

    Article  CAS  PubMed  Google Scholar 

  15. De Bruyne B, Bartunek J, Sys SU et al (1995) Relation between myocardial fractional flow reserve calculated from coronary pressure measurements and exercise-induced myocardial ischemia. Circulation 92:39–46

    Article  PubMed  Google Scholar 

  16. Schulman DS, Lasorda D, Farah T et al (1997) Correlations between coronary flow reserve measured with a Doppler guide wire and treadmill exercise testing. Am Heart J 134:99–104

    Article  CAS  PubMed  Google Scholar 

  17. Piek JJ, Boersma E, Di Mario C et al (2000) Angiographical and Doppler flow-derived parameters for assessment of coronary lesion severity and its relation to the result of exercise electrocardiography. DEBATE study group. Doppler Endpoints Balloon Angioplasty Trial Europe. Eur Heart J 21:466–474

    Article  CAS  PubMed  Google Scholar 

  18. Joye JD, Schulman DS, Lasorda D et al (1994) Intracoronary Doppler guide wire versus stress single-photon emission computed tomographic thallium-201 imaging in assessment of intermediate coronary stenoses. J Am Coll Cardiol 24:940–947

    Article  CAS  PubMed  Google Scholar 

  19. Daimon M, Watanabe H, Yamagishi H et al (2001) Physiologic assessment of coronary artery stenosis by coronary flow reserve measurements with transthoracic Doppler echocardiography: comparison with exercise thallium-201 single photon emission computed tomography. J Am Coll Cardiol 37:1310–1315

    Article  CAS  PubMed  Google Scholar 

  20. Heller LI, Cates C, Popma J et al (1997) Intracoronary Doppler assessment of moderate coronary artery disease: comparison with 201Tl imaging and coronary angiography. FACTS Study Group. Circulation 96:484–490

    Article  CAS  PubMed  Google Scholar 

  21. El-Shafei A, Chiravuri R, Stikovac MM et al (2001) Comparison of relative coronary Doppler flow velocity reserve to stress myocardial perfusion imaging in patients with coronary artery disease. Catheter Cardiovasc Interv 53:193–201

    Article  CAS  PubMed  Google Scholar 

  22. Picano E, Parodi O, Lattanzi F et al (1994) Assessment of anatomic and physiological severity of single-vessel coronary artery lesions by dipyridamole echocardiography. Comparison with positron emission tomography and quantitative arteriography. Circulation 89:753–761

    Article  CAS  PubMed  Google Scholar 

  23. Pijls NH, De Bruyne B, Peels K et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334:1703–1708

    Article  CAS  PubMed  Google Scholar 

  24. Bartunek J, Marwick TH, Rodrigues AC et al (1996) Dobutamine-induced wall motion abnormalities: correlations with myocardial fractional flow reserve and quantitative coronary angiography. J Am Coll Cardiol 27:1429–1436

    Article  CAS  PubMed  Google Scholar 

  25. Bortone AS, Hess OM, Eberli FR et al (1989) Abnormal coronary vasomotion during exercise in patients with normal coronary arteries and reduced coronary flow reserve. Circulation 79:516–527

    Article  CAS  PubMed  Google Scholar 

  26. Scheler S, Motz W, Strauer BE (1992) Transient myocardial ischemia in hypertensives: missing link with left ventricular hypertrophy. Eur Heart J 13(Suppl D):62–65

    Article  PubMed  Google Scholar 

  27. Motz W, Strauer BE (1996) Improvement of coronary flow reserve after long-term therapy with enalapril. Hypertension 27:1031–1038

    Article  CAS  PubMed  Google Scholar 

  28. Di Mario C, Gorge G, Peters R et al (1998) Clinical application and image interpretation in intracoronary ultrasound. Study Group on Intracoronary Imaging of the Working Group of Coronary Circulation and of the Subgroup on Intravascular Ultrasound of the Working Group of Echocardiography of the European Society of Cardiology. Eur Heart J 19:207–229

    Article  PubMed  Google Scholar 

  29. Erbel R (1996) The dawn of a new era – non-invasive coronary imaging. Herz 21:75–77

    CAS  PubMed  Google Scholar 

  30. Verna E, Ceriani L, Giovanella L et al (2000) “False-positive” myocardial perfusion scintigraphy findings in patients with angiographically normal coronary arteries: insights from intravascular sonography studies. J Nucl Med 41:1935–1940

    CAS  PubMed  Google Scholar 

  31. Spes CH, Klauss V, Rieber J et al (1999) Functional and morphological findings in heart transplant recipients with a normal coronary angiogram: an analysis by dobutamine stress echocardiography, intracoronary Doppler and intravascular ultrasound. J Heart Lung Transplant 18:391–398

    Article  CAS  PubMed  Google Scholar 

  32. Topol EJ, Nissen SE (1992) Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92:2333–2342

    Article  Google Scholar 

  33. Rigo F (2005) Coronary flow reserve in stress-echo lab. From pathophysiologic toy to diagnostic tool. Cardiovasc Ultrasound 3:8

    Article  PubMed Central  PubMed  Google Scholar 

  34. Rigo F, Cortigiani L, Pasanisi E et al (2006) The additional prognostic value of coronary flow reserve on left anterior descending artery in patients with negative stress echo by wall motion criteria. A transthoracic vasodilator stress echocardiography study. Am Heart J 151:124–130

    Article  PubMed  Google Scholar 

  35. Neglia D, Michelassi C, Trivieri MG et al (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–193

    Article  PubMed  Google Scholar 

  36. Rigo F, Gherardi S, Galderisi M et al (2006) The prognostic impact of coronary flow-reserve assessed by Doppler echocardiography in non-ischaemic dilated cardiomyopathy. Eur Heart J 27:1319–1323

    Article  PubMed  Google Scholar 

  37. Cecchi F, Olivotto I, Gistri R et al (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349:1027–1035

    Article  CAS  PubMed  Google Scholar 

  38. Cortigiani L, Rigo F, Gherardi S et al (2009) Prognostic implications of coronary flow reserve in hypertrophic cardiomyopathy. A Doppler echocardiographic study. Am J Cardiol 1:36–41

    Google Scholar 

  39. Montalescot G, Sechtem U, Achenbach S et al; Task Force Members (2013) 2013 ESC guidelines on the management of stable coronary artery disease−addenda: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34:2949–3003

    Google Scholar 

  40. Tonino PA, De Bruyne B, Pijls NH et al; FAME Study Investigators (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224

    Google Scholar 

  41. De Bruyne B, Pijls NH, Kalesan B et al; FAME 2 Trial Investigators (2012) Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367:991–1001

    Google Scholar 

  42. Fearon WF, Bornschein B, Tonino PA et al (2010) Economic evaluation of fractional flow reserve-guided percutaneous coronary intervention in patients with multivessel disease. Circulation 122:2545–2550

    Article  PubMed  Google Scholar 

  43. Ntalianis A, Trana C, Muller O et al (2010) Effective radiation dose, time, and contrast medium to measure fractional flow reserve. JACC Cardiovasc Interv 3:821–827

    Article  PubMed  Google Scholar 

  44. Crea F, Camici PG, Bairey Merz CN (2014) Coronary microvascular dysfunction: an update. Eur Heart J 35:1101–1111

    Article  PubMed Central  PubMed  Google Scholar 

  45. Gould KL, Johnson NP, Bateman TM et al (2013) Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol 62:1639–1653

    Article  PubMed  Google Scholar 

  46. van de Hoef TP, van Lavieren MA, Damman P et al (2014) (2014). Physiologic basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ Cardiovasc Interv 7:301–311

    Article  PubMed  Google Scholar 

  47. Lotfi A, Jeremias A, Fearon WF et al (2014) Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography: a consensus statement of the Society of cardiovascular Angiography and Intervention. Catheter Cardiovasc Interv 83:509–518

    Article  PubMed  Google Scholar 

  48. Gaibazzi N, Sicari R, Agricola E et al (2014) Cardiac calcification of transthoracic echo predicts stress echo results. Int J Cardiol 174:393–395

    Article  PubMed  Google Scholar 

  49. Corciu AI, Siciliano V, Poggianti E et al (2010) Cardiac calcification by transthoracic echocardiography in patients with known or suspected coronary artery disease. Int J Cardiol 142:288–295

    Article  PubMed  Google Scholar 

  50. O' Leary DH, Polak JK, Kronmal RA (1999) Carotid intima-media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular health study collaborative research group. N Engl J Med 340:14–22

    Article  Google Scholar 

  51. Greenland P, Alpert JS, Beller GA et al; American College of Cardiology Foundation; American Heart Association (2010) 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 56:e50–103

    Google Scholar 

  52. Leipsic J, Abbasa S, Achenbach S et al (2014) SSCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the society of cardiovascular computed tomography guidelines committee. J Cardiovasc Comput Tomogr 8:342–358

    Article  PubMed  Google Scholar 

  53. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    Article  CAS  PubMed  Google Scholar 

  54. Gallino A, Stuber M, Crea F et al (2012) In vivo imaging of atherosclerosis. Atherosclerosis 224:25–36

    Article  CAS  PubMed  Google Scholar 

  55. Picano E, Landini L, Distante A, Sarnelli R, Benassi A, L'Abbate A (1983) Different degrees of atherosclerosis detected by backscattered ultrasound: an in vitro study on fixed human aortic walls. J Clin Ultrasound 11:375–379

    Article  CAS  PubMed  Google Scholar 

  56. Picano E, Landini L, Distante A, Benassi A, Sarnelli R, L'Abbate A (1985) Fibrosis, lipids, and calcium in human atherosclerotic plaque. In vitro differentiation from normal aortic walls by ultrasonic attenuation. Circ Res 56:556–562

    Article  CAS  PubMed  Google Scholar 

  57. Picano E, Landini L, Distante A et al (1985) Angle dependence of ultrasonic backscatter in arterial tissues: a study in vitro. Circulation 72:572–576

    Article  CAS  PubMed  Google Scholar 

  58. Picano E, Landini L, Lattanzi F et al (1986) The use of frequency histograms of ultrasonic backscatter amplitudes for detection of atherosclerosis in vitro. Circulation 74:1093–1098

    Article  CAS  PubMed  Google Scholar 

  59. Picano E, Landini L, Lattanzi F, Salvadori M, Benassi A, L'Abbate A (1988) Time domain echo pattern evaluations from normal and atherosclerotic arterial walls: a study in vitro. Circulation 77:654–659

    Article  CAS  PubMed  Google Scholar 

  60. Wolverson MK, Bashiti HM, Peterson GJ (1983) Ultrasonic tissue characterization of atheromatous plaques using a high resolution real time scanner. Ultrasound Med Biol 9:599–609

    Article  CAS  PubMed  Google Scholar 

  61. Reilly LM, Lusby RY, Hughes L et al (1983) Carotid plaque histology using real time ultrasonography. Clinical and therapeutic implications. Am J Surg 146:188–193

    Article  CAS  PubMed  Google Scholar 

  62. European Carotid Plaque Study Group (1995) Carotid artery composition – relation to clinical presentation and ultrasound B- mode imaging. Eur J Endov Surg 10:23–32

    Article  Google Scholar 

  63. Mazzone AM, Urbani MP, Picano E et al (1995) In vivo ultrasonic parametric imaging of carotid atherosclerotic plaque by videodensitometric technique. Angiology 46:663–672

    Article  CAS  PubMed  Google Scholar 

  64. El-Barghouty NM, Levine T, Ladva S et al (1996) Histological verification of computerized carotid plaque characterization. Eur J Vasc Endovasc Surg 11:414–416

    Article  CAS  PubMed  Google Scholar 

  65. Baroncini LA, Pazin Filho A, Murta Junior LO et al (2006) Ultrasonic tissue characterization of vulnerable carotid plaque: correlation between videodensitometric method and histological exam. Cardiovasc Ultrasound 4:32

    Article  PubMed Central  PubMed  Google Scholar 

  66. Urbani MP, Picano E, Parenti G et al (1993) In vivo radiofrequency-based ultrasonic tissue characterization of the atherosclerotic plaque. Stroke 24:1507–1512

    Article  CAS  PubMed  Google Scholar 

  67. Kawasaki M, Takatsu H, Noda T et al (2001) Noninvasive quantitative tissue characterization and two-dimensional color-coded map of human atherosclerotic lesions using ultrasound integrated backscatter. Comparison between histology and integrated backscatter images before and after death. J Am Coll Cardiol 38:486–492

    Article  CAS  PubMed  Google Scholar 

  68. Gronholdt ML, Nordestgaard BG, Schroeder TV, Vorstrup S, Sillesen H (2001) Ultrasound echolucent carotid plaques predict future strokes. Circulation 104:68–73

    Article  CAS  PubMed  Google Scholar 

  69. Mathiesen EB, B∅onaa KH, Joakimsen O (2001) Echo-lucent plaques Are associated with high risk of ischemic cerebrovascular events in carotid stenosis. Circulation 103:2171–2175

    Article  CAS  PubMed  Google Scholar 

  70. Honda O, Sugiyama S, Kugiyama K et al (2004) Echolucent carotid plaques predict future coronary events in patients with coronary artery disease. J Am Coll Cardiol 43:1177–1184

    Article  PubMed  Google Scholar 

  71. Biasi GM, Froio AF, Diethrich EB et al (2004) Carotid plaque echolucency increases the risk of stroke in carotid stenting. The Imaging in Carotid Angioplasty and Risk of Stroke (ICAROS) study. Circulation 110:756–762

    Article  PubMed  Google Scholar 

  72. Petersen C, Pecanha P, Venneri L et al (2006) The impact of carotid plaque presence and morphology on mortality outcome in cardiological patients. Cardiovasc Ultrasound 4:16

    Article  PubMed Central  PubMed  Google Scholar 

  73. Cohen A, Tzourio C, Bertrand B, Chauvel C, Bousser MG, Amarenco P (1997) Aortic plaque morphology and vascular events: a follow-up study in patients with ischemic stroke. FAPS Investigators. French Study of Aortic Plaques in Stroke. Circulation 96:3838–3841

    Article  CAS  PubMed  Google Scholar 

  74. Lombardo A, Biasucci LM, Lanza GA et al (2004) Inflammation as a possible link between coronary and carotid plaque instability. Circulation 109:3158–3163

    Article  CAS  PubMed  Google Scholar 

  75. Ibrahimi P, Jashari F, Johansson E et al (2014) Vulnerable plaques in the contralateral carotid arteries in symptomatic patients: a detailed ultrasonic analysis. Atherosclerosis 235:526–531

    Article  CAS  PubMed  Google Scholar 

  76. Coli A, Magnoni M, Sangiorgi G et al (2008) Contrast-enhanced ultrasound imaging of intraplaque neovascularization in carotid arteries: correlation with histology and plaque echogenicity. J Am Coll Cardiol 52:223–230

    Article  PubMed  Google Scholar 

  77. Partovi S, Loebe M, Aschnander M et al (2012) Contrast-enhanced ultrasound for assessing carotid atherosclerosis plaque lesions. AJR Am J Roentgenol 198:W13–W19

    Article  PubMed  Google Scholar 

  78. Lu C, Picano E, Pingitore A et al (1995) Complex coronary artery lesion morphology influences results of stress echocardiography. Circulation 91:1669–1675

    Article  CAS  PubMed  Google Scholar 

  79. Beleslin BD, Ostojic M, Djordjevic-Dikic A et al (1999) Integrated evaluation of relation between coronary lesion features and stress echocardiography results: the importance of coronary lesion morphology. J Am Coll Cardiol 33:717–726

    Article  CAS  PubMed  Google Scholar 

  80. Picano E, Paterni M (2015) Ultrasound tissue characterization of vulnerable atherosclerotic plaque. Int J Mol Sci 16:10121–10133

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Beleslin PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Beleslin, B., Picano, E. (2015). Anatomical and Functional Targets of Stress Testing. In: Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-20958-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20958-6_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20957-9

  • Online ISBN: 978-3-319-20958-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics