Skip to main content

Exercise Echocardiography

  • Chapter
Stress Echocardiography

Abstract

Many tests have been proposed in combination with echocardiography, but only a few have a role in clinical practice. For the diagnosis of organic coronary artery disease, exercise remains the paradigm of all stress tests and the first which was combined with stress echocardiography. In the early 1970s, M-mode recordings of the left ventricle were used in normal subjects [1] and in patients with coronary artery disease [2]. Subsequently, two-dimensional (2D) echocardiography was used to document ischemic regional wall motion abnormality during exercise [3]. The technique was at that time so challenging [4] that with the introduction of dipyridamole [5] and dobutamine [6] as pharmacological stressors, many laboratories used pharmacological stress even in patients who were able to exercise. Large-scale, multicenter, effectiveness studies providing outcome data are available only with pharmacological [7, 8] not with exercise echocardiography, offering a more robust evidence-based platform for their use in clinical practice. Exercise echocardiography was only really applied as a clinical tool in the early 1990s [4], and it is now increasingly used for the diagnosis of coronary artery disease, the functional assessment of intermediate stenosis, and risk stratification. A series of successive improvements led to a progressively widespread acceptance: digital echocardiographic techniques, allowing capture and synchronized display of the same view at different stages [9], improved endocardial border detection by harmonic imaging [10], and ultrasound contrast agents that opacify the left ventricle [11]. In the USA, most laboratories use the post-treadmill approach with imaging at rest and as soon as possible during the recovery period [12, 13]. In Europe, a number of centers have implemented their stress echocardiography laboratory with a dedicated bed or table allowing bicycle exercise in a semisupine position and real-time continuous imaging throughout exercise [14, 15]. The diffusion of semisupine exercise imaging – much more user-friendly for the sonographer than the treadmill test – made image acquisition easier and interpretation faster [16–18]. Semisupine exercise gained its well-deserved role in the stress echocardiography laboratory for coronary artery disease diagnosis and, with growing frequency outside coronary artery disease, in the assessment of pulmonary hypertension, valve disease, cardiomyopathy, and heart failure [19, 20].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kraunz RF, Kennedy JW (1970) An ultrasonic determination of left ventricular wall motion in normal man. Studies at rest and after exercise. Am Heart J 79:36–43

    Article  CAS  PubMed  Google Scholar 

  2. Mason SJ, Weiss JL, Weisfeldt ML et al (1979) Exercise echocardiography in detection of wall motion abnormalities during ischemia. Circulation 59:50–54

    Article  CAS  PubMed  Google Scholar 

  3. Wann LS, Faris JV, Childress RH et al (1979) Exercise cross sectional echocardiography in ischemic heart disease. Circulation 60:1300–1308

    Article  CAS  PubMed  Google Scholar 

  4. Bairey CN, Rozanski A, Berman DS (1988) Exercise echocardiography: ready or not? J Am Coll Cardiol 11:1355–1358

    Article  CAS  PubMed  Google Scholar 

  5. Picano E, Distante A, Masini M et al (1985) Dipyridamole-echocardiography test in effort angina pectoris. Am J Cardiol 56:452–456

    Article  CAS  PubMed  Google Scholar 

  6. Berthe C, Pierard LA, Hiernaux M et al (1986) Predicting the extent and location of coronary artery disease in acute myocardial infarction by echocardiography during dobutamine infusion. Am J Cardiol 58:1167–1172

    Article  CAS  PubMed  Google Scholar 

  7. Picano E, Landi P, Bolognese L et al (1993) Prognostic value of dipyridamole echocardiography early after uncomplicated myocardial infarction: a large-scale, multicenter trial. The EPIC Study Group. Am J Med 95:608–618

    Article  CAS  PubMed  Google Scholar 

  8. Picano E, Sicari R, Landi P et al (1998) Prognostic value of myocardial viability in medically treated patients with global left ventricular dysfunction early after an acute uncomplicated myocardial infarction: a dobutamine stress echocardiographic study. Circulation 98:1078–1084

    Article  CAS  PubMed  Google Scholar 

  9. Feigenbaum H (1994) A digital echocardiographic laboratory. J Am Soc Echocardiogr 7:105–106

    Article  CAS  PubMed  Google Scholar 

  10. Caidahl K, Kazzam E, Lidberg J et al (1998) New concept in echocardiography: harmonic imaging of tissue without use of contrast agent. Lancet 352:1264–1270

    Article  CAS  PubMed  Google Scholar 

  11. Laskar R, Grayburn PA (2000) Assessment of myocardial perfusion with contrast echocardiography at rest and with stress: an emerging technology. Prog Cardiovasc Dis 43:245–258

    Article  CAS  PubMed  Google Scholar 

  12. Armstrong WF, Ryan T (2008) Stress echocardiography from 1979 to present. J Am Soc Echocardiogr 21:22–28

    Article  PubMed  Google Scholar 

  13. Pellikka PA, Nagueh SF, Elhendy AA et al; American Society of Echocardiography (2007) American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr 20:1021–1041

    Google Scholar 

  14. Pierard LA (2007) Echocardiographic monitoring throughout exercise better than the posttreadmill approach? J Am Coll Cardiol 50:1864–1866

    Article  PubMed  Google Scholar 

  15. Sicari R, Nihoyannopoulos P, Evangelista A et al (2008) Stress echocardiography consensus statement of the European Association of Echocardiography. Eur J Echocardiogr 9:415–437

    Article  PubMed  Google Scholar 

  16. Picano E, Lattanzi F, Masini M et al (1987) Comparison of high-dose dipyridamole-echocardiography test and exercise 2-D echocardiography for diagnosis of coronary artery disease. Am J Cardiol 59:539–542

    Article  CAS  PubMed  Google Scholar 

  17. Hecht HS, DeBord L, Sho WR et al (1993) Digital supine bicycle stress echocardiography: a new technique for evaluating coronary artery disease. J Am Coll Cardiol 21:950–956

    Article  CAS  PubMed  Google Scholar 

  18. Park TH, Tayan N, Takeda K et al (2007) Supine bicycle echocardiography improved diagnostic accuracy and physiologic assessment of coronary artery disease with the incorporation of intermediate stages of exercise. J Am Coll Cardiol 50:1857–1863

    Article  PubMed  Google Scholar 

  19. Piérard LA, Lancellotti P (2007) Stress testing in valve disease. Heart 93:766–772

    Article  PubMed Central  PubMed  Google Scholar 

  20. Tumminello G, Lancellotti P, Lempereur M et al (2007) Determinants of pulmonary artery hypertension at rest and during exercise in patients with heart failure. Eur Heart J 28:569–574

    Article  PubMed  Google Scholar 

  21. Bombardini T, Gemignani V, Bianchini E et al (2007) Cardiac reflections and natural vibrations: force-frequency relation recording system in the stress echo lab. Cardiovasc Ultrasound 5:42

    Article  PubMed Central  PubMed  Google Scholar 

  22. Bombardini T, Nevola E, Giorgetti A et al (2008) Prognostic value of left-ventricular and peripheral vascular performance in patients with dilated cardiomyopathy. J Nucl Cardiol 15:353–362

    Article  PubMed  Google Scholar 

  23. Beleslin BD, Ostojic M, Stepanovic J et al (1994) Stress echocardiography in the detection of myocardial ischemia. Head-to-head comparison of exercise, dobutamine, and dipyridamole tests. Circulation 90:1168–1176

    Article  CAS  PubMed  Google Scholar 

  24. Thadani U, West RO, Mathew TM et al (1977) Hemodynamics at rest and during supine and sitting bicycle exercise in patients with coronary artery disease. Am J Cardiol 39:776–783

    Article  CAS  PubMed  Google Scholar 

  25. Poliner LR, Dehmer GJ, Lewis SE et al (1980) Left ventricular performance in normal subjects: a comparison of the responses to exercise in the upright and supine positions. Circulation 62:528–534

    Article  CAS  PubMed  Google Scholar 

  26. Currie PJ, Kelly MJ, Pitt A (1983) Comparison of supine and erect bicycle exercise eletrocardiography in coronary artery disease: accentuation of exercise-induced ischemic ST segment depression by supine posture. Am J Cardiol 52:1167–1173

    Article  CAS  PubMed  Google Scholar 

  27. Yamakado T, Kasai A, Masuda T et al (1996) Exercise-induced coronary spasm: comparison of treadmill and bicycle exercise in patients with vasospastic angina. Coron Artery Dis 7:819–822

    Article  CAS  PubMed  Google Scholar 

  28. Fletcher GF, Balady GJ, Amsterdam EA et al (2001) Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation 104:1694–1740

    Article  CAS  PubMed  Google Scholar 

  29. Varga A, Garcia MA, Picano E et al (2006) Safety of stress echocardiography (from the International Stress Echo Complication Registry). Am J Cardiol 98:541–543

    Article  PubMed  Google Scholar 

  30. Picano E, Marini C, Pirelli S et al (1992) Safety of intravenous high-dose dipyridamole echocardiography. The Echo-Persantine International Cooperative Study Group. Am J Cardiol 70:252–258

    Article  CAS  PubMed  Google Scholar 

  31. Picano E, Mathias W Jr, Pingitore A et al (1994) Safety and tolerability of dobutamine-atropine stress echocardiography: a prospective, multicentre study. Echo Dobutamine International Cooperative Study Group. Lancet 344:1190–1192

    Article  CAS  PubMed  Google Scholar 

  32. Beckmann S, Haug G (1999) National registry 1995–1998 on 150,000 stress echo examinations side effects and complications in 60,448 examinations of the registry 1997–1998. Circulation 100(Suppl):3401A

    Google Scholar 

  33. Fleischmann KE, Hunink MG, Kuntz KM et al (1998) Exercise echocardiography or exercise SPECT imaging? A meta analysis of diagnostic test performance. JAMA 280:913–920

    Article  CAS  PubMed  Google Scholar 

  34. Albuquerque de Fonseca L, Picano E (2001) Comparison of dipyridamole and exercise stress echocardiography for detection of coronary artery disease (a meta-analysis). Am J Cardiol 87:1193–1196

    Article  Google Scholar 

  35. Kim C, Kwok YS, Heagerty P et al (2001) Pharmacologic stress testing for coronary disease diagnosis: a meta-analysis. Am Heart J 142:934–944

    Article  CAS  PubMed  Google Scholar 

  36. Noguchi Y, Nagata-Kobayashi S, Stahl JE et al (2005) A meta-analytic comparison of echocardiographic stressors. Int J Cardiovasc Imaging 21:189–207

    Article  PubMed  Google Scholar 

  37. Heijenbrok-Kal MH, Fleischmann KE, Hunink MG (2007) Stress echocardiography, stress single-photon-emission computed tomography and electron beam computed tomography for the assessment of coronary artery disease: a meta-analysis of diagnostic performance. Am Heart J 154:415–423

    Article  PubMed  Google Scholar 

  38. Hoffer EP, Dewe W, Celentano C et al (1999) Low-level exercise echocardiography detects contractile reserve and predicts reversible dysfunction after acute myocardial infarction: comparison with low-dose dobutamine echocardiography. J Am Coll Cardiol 34:989–997

    Article  CAS  PubMed  Google Scholar 

  39. Lancellotti P, Hoffer EP, Piérard LA (2003) Detection and clinical usefulness of a biphasic response during exercise echocardiography early after myocardial infarction. J Am Coll Cardiol 41:1142–1147

    Article  PubMed  Google Scholar 

  40. Sawada SG, Ryan T, Conley M et al (1990) Prognostic value of a normal exercise echocardiogram. Am Heart J 120:49–55

    Article  CAS  PubMed  Google Scholar 

  41. Olmos LI, Dakik H, Gordon R et al (1998) Long-term prognostic value of exercise echocardiography compared with exercise 201Tl, ECG, and clinical variables in patients evaluated for coronary artery disease. Circulation 98:2679–2686

    Article  CAS  PubMed  Google Scholar 

  42. Marwick TH, Case C, Vasey C et al (2001) Prediction of mortality by exercise echocardiography: a strategy for combination with the Duke treadmill score. Circulation 103:2566–2571

    Article  CAS  PubMed  Google Scholar 

  43. Arruda-Olson AM, Juracan EM, Mahoney DW et al (2002) Prognostic value of exercise echocardiography in 5,798 patients: is there a gender difference? J Am Coll Cardiol 39:625–631

    Article  PubMed  Google Scholar 

  44. Jaarsma W, Visser C, Funke Kupper A (1986) Usefulness of two-dimensional exercise echocardiography shortly after myocardial infarction. Am J Cardiol 57:86–90

    Article  CAS  PubMed  Google Scholar 

  45. Applegate RJ, Dell’Italia LJ, Crawford MH (1987) Usefulness of two-dimensional echocardiography during low level exercise-testing early after uncomplicated myocardial infarction. Am J Cardiol 60:10–14

    Article  CAS  PubMed  Google Scholar 

  46. Ryan T, Armstrong WF, O’Donnel JA et al (1987) Risk stratification following acute myocardial infarction during exercise two-dimensional echocardiography. Am Heart J 114:1305–1316

    Article  CAS  PubMed  Google Scholar 

  47. Quintana M, Lindvall K, Ryden L et al (1995) Prognostic value of predischarge exercise stress echocardiography after acute myocardial infarction. Am J Cardiol 76:1115–1121

    Article  CAS  PubMed  Google Scholar 

  48. Heupler S, Mehta R, Lobo A et al (1997) Prognostic implications of exercise echocardiography in women with known or suspected coronary artery disease. J Am Coll Cardiol 30:414–420

    Article  CAS  PubMed  Google Scholar 

  49. Marwick TH, Case C, Sawada S et al (2002) Prediction of outcomes in hypertensive patients with suspected coronary disease. Hypertension 39:1113–1138

    Article  CAS  PubMed  Google Scholar 

  50. Shaw LJ, Marwick TH, Berman DS et al (2006) Incremental cost-effectiveness of exercise echocardiography vs. SPECT imaging for the evaluation of stable chest pain. Eur Heart J 27:2448–2458

    Article  PubMed  Google Scholar 

  51. Yao SS, Shah A, Bangalore S et al (2007) Transient ischemic left ventricular cavity dilation is a significant predictor of severe and extensive coronary artery disease and adverse outcome in patients undergoing stress echocardiography. J Am Soc Echocardiogr 20:352–358

    Article  PubMed  Google Scholar 

  52. Lancellotti P, Gérard PL, Piérard LA (2006) Long-term outcome of patients with heart failure and dynamic functional mitral regurgitation. Eur Heart J 27:187–192

    Google Scholar 

  53. Peteiro JC, Monserrat L, Bouzas A et al (2006) Risk stratification by treadmill exercise echocardiography. J Am Soc Echocardiogr 19:894–901

    Article  PubMed  Google Scholar 

  54. Picano E, Pellikka PA (2014) Stress echo applications beyond coronary artery disease. Eur Heart J 35:1033–1040

    Article  PubMed  Google Scholar 

  55. Henri C, Pierard L, Lancellotti P et al (2014) Exercise testing stress imaging in valvular heart disease. Can J Cardiol 30:1012–1016

    Article  PubMed  Google Scholar 

  56. Montalescot G, Sechtem U, Achenbach S et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34:2949–3003

    Article  PubMed  Google Scholar 

  57. Wolk MJ, Bailey SR, Doherty JU et al; American College of Cardiology Foundation Appropriate Use Criteria Task Force (2014) ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol 63:380–406

    Google Scholar 

  58. Picano E, Vañó E, Rehani MM et al (2014) The appropriate and justified use of medical radiation in cardiovascular imaging: a position document of the ESC Associations of Cardiovascular Imaging, Percutaneous Cardiovascular Interventions and Electrophysiology. Eur Heart J 35:665–672

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc A. Piérard PhD .

Table of Contents Video Companion

Table of Contents Video Companion

  • See also in the section illustrative cases: case number 9 (by Jesus Peteiro, La Coruna, Spain) and 10 (by Bogdan Popescu, MD, Bucarest, Romania); cases 29, 30, and 31 (by Maria Joao Andrade, Lisbon, Portugal)

  • Springer Extra Materials available at http://extras.springer.com/2015/978-3-319-20957-9

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Piérard, L.A., Picano, E. (2015). Exercise Echocardiography. In: Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-20958-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20958-6_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20957-9

  • Online ISBN: 978-3-319-20958-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics