Skip to main content

Granulation and Tabletting

  • Chapter

Part of the book series: Particle Technology Series ((POTS,volume 25))

Abstract

This chapter provides an overview of the granulation and tabletting processes, with a focus on wet granulation. The emphasis is on the applications of wet granulation, including practical advice for the design, operation, and control of the equipment, as well as specific industrial applications. Although the mechanisms are fairly well understood, achieving better product control remains a challenge, and therefore is an active area of research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abberger, T., Seo, A., Schæfer, T.: The effect of droplet size and powder particle size on the mechanisms of nucleation and growth in fluid bed melt agglomeration. Int. J. Pharm. 249, 185–197 (2002)

    Article  Google Scholar 

  2. Ash, M., Ash, I.: Handbook of Food Additives. Synapse Information Resources, Endicott (2008)

    Google Scholar 

  3. Ash, M., Ash, I.: Handbook of Pharmaceutical Additives. Synapse Information Resources, Endicott (2007)

    Google Scholar 

  4. Aulton, M.E., Banks, M.: Fluidised bed granulation – factors influencing the quality of the product. Int. J. Pharm. Technol. Prod. Manuf. 2(4), 24–29 (1981)

    Google Scholar 

  5. Bayly, A.E., et al.: Detergent processing. In: Zoller, U., Sosis, P. (eds.) Handbook of Detergents, Part F: Production. Taylor & Francis, Boca Raton (2008)

    Google Scholar 

  6. Boerefijn, R., Dontula, P.-R., Kohlus, R.: Detergent granulation. In: Salman, A.D., Hounslow, M.J., Seville, J.P.K. (eds.) Granulation. Elsevier Science B.V., Amsterdam (2008)

    Google Scholar 

  7. Boerefijn, R., Hounslow, M.J.: Studies of fluid bed granulation in an industrial R&D context. Chem. Eng. Sci. 60(14), 3879–3890 (2005)

    Article  Google Scholar 

  8. Butensky, M., Hyman, D.: Rotary drum granulation. An experimental study of the factors affecting granule size. Ind. Eng. Chem. 10(2), 212–219 (1971)

    Google Scholar 

  9. Campanati, M., Fornasari, G., Vaccari, A.: Fundamentals in the preparation of heterogeneous catalysts. Catal. Today 77(4), 299–314 (2003)

    Article  Google Scholar 

  10. Çelik, M.: Pharmaceutical Powder Compaction Technology, 2nd edn. CRC Press, Boca Raton (2011)

    Google Scholar 

  11. Dadkhah, M., Peglow, M., Tsotsas, E.: Characterization of the internal morphology of agglomerates produced in a spray fluidized bed by X-ray tomography. Powder Technol. 228, 349–358 (2012)

    Article  Google Scholar 

  12. Degreve, J., et al.: Spray-agglomeration of NPK-fertilizer in a rotating drum granulator. Powder Technol. 163(3), 188–195 (2006)

    Article  Google Scholar 

  13. Deng, S.G., Lin, Y.S.: Granulation of sol-gel-derived nanostructured alumina. AIChE J. 43(2), 505–514 (1997)

    Article  Google Scholar 

  14. Van den Dries, K., et al.: Granule breakage phenomena in a high shear mixer; influence of process and formulation variables and consequences on granule homogeneity. Powder Technol. 113, 228–236 (2003)

    Article  Google Scholar 

  15. Eckhard, S., Nebelung, M.: Investigations of the correlation between granule structure and deformation behavior. Powder Technol. 206(1–2), 79–87 (2011)

    Article  Google Scholar 

  16. Emady, H.N., et al.: Granule formation mechanisms and morphology from single drop impact on powder beds. Powder Technol. 212(1), 69–79 (2011)

    Article  Google Scholar 

  17. Emady, H.N., Kayrak-Talay, D., Litster, J.D.: A regime map for granule formation by drop impact on powder beds. AIChE J. 59(1), 96–107 (2013)

    Article  Google Scholar 

  18. Emady, H.N., Kayrak-Talay, D., Litster, J.D.: Modeling the granule formation mechanism from single drop impact on a powder bed. J. Colloid Interface Sci. 393, 369–376 (2013)

    Article  Google Scholar 

  19. Ennis, B.J., Tardos, G., Pfeffer, R.: A microlevel-based characterization of granulation phenomena. Powder Technol. 65(1–3), 257–272 (1991)

    Article  Google Scholar 

  20. Farber, L., et al.: Unified compaction curve model for tensile strength of tablets made by roller compaction and direct compression. Int. J. Pharm. 346(1–2), 17–24 (2008)

    Article  Google Scholar 

  21. Farber, L., Tardos, G., Michaels, J.N.: Use of X-ray tomography to study the porosity and morphology of granules. Powder Technol. 132(1), 57–63 (2003)

    Article  Google Scholar 

  22. Faure, A., York, P., Rowe, R.C.: Process control and scale-up of pharmaceutical wet granulation processes: a review. Eur. J. Pharm. Biopharm. 52(3), 269–277 (2001)

    Article  Google Scholar 

  23. Franceschinis, E., et al.: High shear mixer granulation using food grade binders with different thickening power. Food Res. Int. 64, 711–717 (2014)

    Article  Google Scholar 

  24. Fries, L., et al.: DEM–CFD modeling of a fluidized bed spray granulator. Chem. Eng. Sci. 66(11), 2340–2355 (2011)

    Article  Google Scholar 

  25. Glaser, T., et al.: Model predictive control of continuous drum granulation. J. Process Control 19(4), 615–622 (2009)

    Article  MathSciNet  Google Scholar 

  26. Hapgood, K., Litster, J.D., Smith, R.: Nucleation regime map for liquid bound granules. AIChE J. 49(2), 350–361 (2003)

    Article  Google Scholar 

  27. Hapgood, K.P., et al.: Drop penetration into porous powder beds. J. Colloid Interface Sci. 253(2), 353–366 (2002)

    Article  Google Scholar 

  28. Hapgood, K.P., et al.: Improving liquid distribution by reducing dimensionless spray flux in wet granulation—a pharmaceutical manufacturing case study. Chem. Eng. J. 164(2–3), 340–349 (2010)

    Article  Google Scholar 

  29. Hart, A., Wu, C.Y.: The impact of dry granulation on detergent powder properties. In: Particulate Materials: Synthesis, Characterisation, Processing and Modelling, pp. 102–110. The Royal Society of Chemistry, UK (2012)

    Google Scholar 

  30. Hassanpour, A., et al.: Effect of granulation scale-up on the strength of granules. Powder Technol. 189, 304–312 (2009)

    Article  Google Scholar 

  31. Heim, A., Gluba, T., Obraniak, A.: The effect of the wetting droplets size on power consumption during drum granulation. Granul. Matter 6(2–3), 137–143 (2004)

    Article  MATH  Google Scholar 

  32. Hemati, M., et al.: Fluidized bed coating and granulation: influence of process-related variables and physicochemical properties on the growth kinetics. Powder Technol. 130(1–3), 18–34 (2003)

    Article  Google Scholar 

  33. Holm, P.: Effect of impeller and chopper design on granulation in a high speed mixer. Drug Dev. Ind. Pharm. 13(9–11), 1675–1701 (1987)

    Article  Google Scholar 

  34. Holm, P., et al.: Granulation in high speed mixers. Part 1. Effects of process variables during kneading. Pharm. Ind. 45(8), 806–811 (1983)

    MathSciNet  Google Scholar 

  35. Holt, E.M.: The properties and forming of catalysts and absorbents by granulation. Powder Technol. 140(3), 194–202 (2004)

    Article  MathSciNet  Google Scholar 

  36. Hsu, S.-H., Reklaitis, G., Venkatasubramania, V.: Modeling and control of roller compaction for pharmaceutical manufacturing. J. Pharm. Innov. 5(1–2), 24–36 (2010)

    Article  Google Scholar 

  37. Hu, X., Cunningham, J.C., Winstead, D.: Study growth kinetics in fluidized bed granulation with at-line FBRM. Int. J. Pharm. 347(1–2), 54–61 (2008)

    Article  Google Scholar 

  38. Huang, J., et al.: A PAT approach to improve process understanding of high shear wet granulation through in-line particle measurement using FBRM C35. J. Pharm. Sci. 99(7), 3205–3212 (2010)

    Google Scholar 

  39. Ingram, A., et al.: Axial and radial dispersion in rolling mode rotating drums. Powder Technol. 158(1–3), 76–91 (2005)

    Article  Google Scholar 

  40. Islam, A., et al.: Synthesis and characterization of millimetric gamma alumina spherical particles by oil drop granulation method. J. Porous. Mater. 19(5), 807–817 (2011)

    Article  Google Scholar 

  41. Iveson, S.M., Wauters, P.A.L., et al.: Growth regime map for liquid-bound granules: further development and experimental validation. Powder Technol. 117(1–2), 83–97 (2001)

    Article  Google Scholar 

  42. Iveson, S.M., Litster, J.D., et al.: Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 117(1–2), 3–39 (2001)

    Article  Google Scholar 

  43. Iveson, S.M., Beathe, J.A., Page, N.W.: The dynamic strength of partially saturated powder compacts: the effect of liquid properties. Powder Technol. 127, 149–161 (2002)

    Article  Google Scholar 

  44. Iveson, S.M., Litster, J.D.: Fundamental studies of granule consolidation part 2: quantifying the effects of particle and binder properties. Powder Technol. 99(3), 243–250 (1998)

    Article  Google Scholar 

  45. Iveson, S.M., Litster, J.D.: Growth regime map for liquid-bound granules. AIChE J. 44(7), 1510–1518 (1998)

    Article  Google Scholar 

  46. Iveson, S.M., Litster, J.D., Ennis, B.J.: Fundamental studies of granule consolidation Part 1: Effects of binder content and binder viscosity. Powder Technol. 88(1), 15–20 (1996)

    Article  Google Scholar 

  47. Iveson, S.M., Page, N.W.: Brittle to plastic transition in the dynamic mechanical behavior of partially saturated granular materials. J. Appl. Mech. – Trans. ASME 71, 470–475 (2004)

    Article  MATH  ADS  Google Scholar 

  48. Iveson, S.M., Page, N.W.: Dynamic strength of liquid-bound granular materials: the effect of particle size and shape. Powder Technol. 152(1–3), 79–89 (2005)

    Article  Google Scholar 

  49. Johansen, A., Schæfer, T.: Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer. Eur. J. Pharm. Sci. 12, 297–309 (2001)

    Article  Google Scholar 

  50. Kapur, P.C.: Balling and granulation. Adv. Chem. Eng. 10, 55–123 (1978)

    Article  Google Scholar 

  51. Kariuki, W.I.J., et al.: Distribution nucleation: quantifying liquid distribution on the particle surface using the dimensionless particle coating number. Chem. Eng. Sci. 92, 134–145 (2013)

    Article  Google Scholar 

  52. Kayrak-Talay, D., et al.: Quality by design for wet granulation in pharmaceutical processing: assessing models for a priori design and scaling. Powder Technol. 240, 7–18 (2013)

    Article  Google Scholar 

  53. Khadilkar, A., Rozelle, P.L., Pisupati, S.V.: Models of agglomerate growth in fluidized bed reactors: critical review, status and applications. Powder Technol. 264, 216–228 (2014)

    Article  Google Scholar 

  54. Kleinebudde, P.: Roll compaction/dry granulation: pharmaceutical applications. Eur. J. Pharm. BioPharm. 58(2), 317–326 (2004)

    Article  Google Scholar 

  55. Knight, P.C., et al.: An investigation of the effects on agglomeration of changing the speed of a mechanical mixer. Powder Technol. 110, 204–209 (2000)

    Article  Google Scholar 

  56. Kumar, A., et al.: Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production – a critical review. Eur. J. Pharm. Biopharm. 85(3 Pt B), 814–832 (2013)

    Article  Google Scholar 

  57. Kunii, D., Levenspiel, O.: Ch. 3 – Fluidization and mapping of regimes. In: Levenspiel, D.K. (ed.) Fluidization Engineering, 2nd edn, pp. 61–94. Butterworth-Heinemann, Boston (1991)

    Chapter  Google Scholar 

  58. Le, P.K., et al.: A microscopic study of granulation mechanisms and their effect on granule properties. Powder Technol. 206(1–2), 18–24 (2011)

    Article  Google Scholar 

  59. Li, P., et al.: Effect of granulation on the activity and stability of a Co–Al2O3 aerogel catalyst in a fluidized-bed reactor for CH4–CO2 reforming. RSC Adv. 3(23), 8939 (2013)

    Article  Google Scholar 

  60. Litster, J.D., et al.: Liquid distribution in wet granulation: dimensionless spray flux. Powder Technol. 114(1–3), 32–39 (2001)

    Article  Google Scholar 

  61. Litster, J.D., et al.: Scale-up of mixer granulators for effective liquid distribution. Powder Technol. 124(3), 272–280 (2002)

    Article  Google Scholar 

  62. Litster, J., Ennis, B., Lian, L.: The Science and Engineering of Granulation Processes. Kluwer Academic, Dordrecht (2004)

    Google Scholar 

  63. Liu, L.X., et al.: Coalescence of deformable granules in wet granulation processes. AIChE J. 46(3), 529–539 (2000)

    Article  Google Scholar 

  64. Liu, L.X., Smith, R., Litster, J.D.: Wet granule breakage in a breakage only high-shear mixer: effect of formulation properties on breakage behaviour. Powder Technol. 189(2), 158–164 (2009)

    Article  Google Scholar 

  65. Liu, Y., et al.: Granulation processing parameters on the mechanical properties of diatomite-based porous granulates. Powder Technol. 263, 159–167 (2014)

    Article  Google Scholar 

  66. Merkus, H., Meesters, G.H.: In: Merkus, H.G., Meesters, G.M.H. (eds.) Particulate Products: Tailoring Properties for Optimal Performance. Springer International Publishing, Switzerland (2014)

    Google Scholar 

  67. Merkus, H.G.: Particle Size Measurements: Fundamentals, Practice, Quality. Springer Science+Business Media B.V., Dordrecht (2009)

    Google Scholar 

  68. Michaels, J.N., et al.: Steady states in granulation of pharmaceutical powders with application to scale-up. Powder Technol. 189(2), 295–303 (2009)

    Article  Google Scholar 

  69. Michels, N.-L., et al.: Hierarchically structured zeolite bodies: assembling micro-, meso-, and macroporosity levels in complex materials with enhanced properties. Adv. Funct. Mater. 22(12), 2509–2518 (2012)

    Article  Google Scholar 

  70. Mitchell, S., Michels, N.-L., Pérez-Ramírez, J.: From powder to technical body: the undervalued science of catalyst scale up. Chem. Soc. Rev. 42(14), 6094–6112 (2013)

    Article  Google Scholar 

  71. Mort, P.R.: Scale-up and control of binder agglomeration processes – flow and stress fields. Powder Technol. 189(2), 313–317 (2009)

    Article  Google Scholar 

  72. Mort, P.R.: Scale-up of binder agglomeration processes. Powder Technol. 150(2), 86–103 (2005)

    Article  Google Scholar 

  73. Mort, P.R., Capeci, S.W., Holder, J.W.: Control of agglomerate attributes in a continuous binder-agglomeration process. Powder Technol. 117(1–2), 173–176 (2001)

    Article  Google Scholar 

  74. Newitt, D.M., Conway-Jones, J.M.: A contribution to the theory and practice of granulation. Trans. Inst. Chem. Eng. 36, 422–442 (1958)

    Google Scholar 

  75. Nguyen, T., Shen, W., Hapgood, K.: Drop penetration time in heterogeneous powder beds. Chem. Eng. Sci. 64(24), 5210–5221 (2009)

    Article  Google Scholar 

  76. Nguyen, T.H., Morton, D.A.V., Hapgood, K.P.: Application of the unified compaction curve to link wet granulation and tablet compaction behaviour. Powder Technol. 240, 103–115 (2013)

    Google Scholar 

  77. Niazi, S.K.: Handbook of Pharmaceutical Manufacturing Formulations. Informa Healthcare, Boca Raton (2004)

    Google Scholar 

  78. Palzer, S.: Agglomeration of dehydrated consumer foods. In: Salman, A.D., Hounslow, M.J., Seville, J.P.K. (eds.) Granulation, pp. 591–671. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  79. Palzer, S.: Agglomeration of pharmaceutical, detergent, chemical and food powders—similarities and differences of materials and processes. Powder Technol. 206(1–2), 2–17 (2011)

    Article  Google Scholar 

  80. Parikh, D.M. (ed.): Handbook of Pharmaceutical Granulation Technology, 2nd edn. Taylor & Francis, Boca Raton (2005)

    Google Scholar 

  81. Parker, D.J., et al.: Positron imaging studies of rotating drums. Can. J. Chem. Eng. 83(1), 83–87 (2005)

    Article  Google Scholar 

  82. Pathare, P.B., Byrne, E.P.: Application of wet granulation processes for granola breakfast cereal production. Food Eng. Rev. 3, 189–201 (2011)

    Article  Google Scholar 

  83. Pearson, J.K.M., Hounslow, M.J., Instone, T.: Tracer studies of high-shear granulation I: experimental results. AIChE 47(9), 1978–1983 (2001)

    Article  Google Scholar 

  84. Poon, J.M.H., et al.: Experimental validation studies on a multi-dimensional and multi-scale population balance model of batch granulation. Chem. Eng. Sci. 64(4), 775–786 (2009)

    Article  Google Scholar 

  85. Van Puyvelde, D.R., et al.: Experimental determination of transverse mixing kinetics in a rolling drum by image analysis. Powder Technol. 106(3), 183–191 (1999)

    Article  Google Scholar 

  86. Rahmanian, N., et al.: Characterisation of granule structure and strength made in a high shear granulator. Powder Technol. 192(2), 184–194 (2009)

    Article  Google Scholar 

  87. Rahmanian, N., Ghadiri, M., Ding, Y.: Effect of scale of operation on granule strength in high shear granulators. Chem. Eng. Sci. 63(4), 915–923 (2008)

    Article  Google Scholar 

  88. Ramaker, J.S., et al.: Scale-down of a high shear pelletisation process: flow profile and growth kinetics. Int. J. Pharm. 166, 89–97 (1998)

    Article  Google Scholar 

  89. Reynolds, G.K., et al.: Direct measurement of surface granular temperature in a high shear granulator. Powder Technol. 182(2), 211–217 (2008)

    Article  Google Scholar 

  90. Rowe, R.C., Sheskey, P.J., Quinn, M.: Handbook of Pharmaceutical Excipients, 6th edn. Pharmaceutical Press, London (2009)

    Google Scholar 

  91. Salman, A.D., Hounslow, M.J., Seville, J.P.K.: Granulation. Elsevier Science B.V., Amsterdam (2008)

    Google Scholar 

  92. Sanders, C.F.W., Hounslow, M.J., Doyle III, F.J.: Identification of models for control of wet granulation. Powder Technol. 188(3), 255–263 (2009)

    Article  Google Scholar 

  93. Schaafsma, S.H., et al.: Description of agglomerate growth. Powder Technol. 97(3), 183–190 (1998)

    Article  Google Scholar 

  94. Schaafsma, S.H., et al.: Effects and control of humidity and particle mixing in fluid-bed granulation. AIChE J. 45(6), 1202–1210 (1999)

    Article  Google Scholar 

  95. Schaafsma, S.H., Vonk, P., Kossen, N.W.F.: Fluid bed agglomeration with a narrow droplet size distribution. Int. J. Pharm. 193(2), 175–187 (2000)

    Article  Google Scholar 

  96. Schæfer, T., Holm, P., Kristensen, H.G.: Melt pelletization in a high shear mixer I. Effects of process variables and binder. Acta Pharm. Nord. 4(3), 133–140 (1992)

    Google Scholar 

  97. Schæfer, T., Wørts, O.: Control of fluidised bed granulation II: estimation of droplet size of atomised binder solutions. Arch. Pharm. Chem 5, 178–193 (1977)

    Google Scholar 

  98. Schæfer, T., Wørts, O.: Control of fluidised bed granulation III: effects of inlet air temperature and liquid flow rate on granule size and size distribution. Control of moisture content in the drying phase. Arch. Pharm. Chem. 6, 1–13 (1978)

    Google Scholar 

  99. Schmidt, F., et al.: Novel composite spherical granulates with catalytic outer layer and improved conversion efficiency and selectivity. Chem. Eng. Technol. 35(4), 769–775 (2012)

    Article  ADS  Google Scholar 

  100. Seo, A., Holm, P., Schaefer, T.: Effects of droplet size and type of binder on the agglomerate growth mechanisms by melt agglomeration in a fluidised bed. Eur. J. Pharm. Sci. 16(3), 95–105 (2002)

    Article  Google Scholar 

  101. Seville, J.P.K.: Chapter 22 Fluidisation of cohesive particles. In: Salman, M.J.H.A.D, Seville, J.P.K. (eds.) Handbook of Powder Technology, pp. 1041–1069. Elsevier Science B.V., Amsterdam (2007)

    Google Scholar 

  102. Showell, M.: Handbook of Detergents. In: Showell, M. (ed.) Formulation, p. 128 (2005)

    Google Scholar 

  103. Sistare, F., Berry, L.S.P., Mojica, C.A.: Process analytical technology: an investment in process knowledge. Org. Process Res. Dev. 9(3), 332–336 (2005)

    Article  Google Scholar 

  104. Smith, R.M., Litster, J.D.: Examining the failure modes of wet granular materials using dynamic diametrical compression. Powder Technol. 224, 189–195 (2012)

    Article  Google Scholar 

  105. Smith, R.M., Litster, J.D., Howes, T.: Wet granule breakage in high shear mixer granulators. PhD Thesis. Brisbane: The University of Queensland (2008)

    Google Scholar 

  106. Smith, R.M., Liu, L.A.X., Litster, J.D.: Breakage of drop nucleated granules in a breakage only high shear mixer. Chem. Eng. Sci. 65(21), 5651–5657 (2010)

    Article  Google Scholar 

  107. Tangboriboon, N., et al.: Ceramic granules forming from calcium sodium aluminosilicate and carboxymethyl cellulose. J. Ceram. Process. Res. 14(6), 658–666 (2013)

    Google Scholar 

  108. Teng, Y., Qiu, Z., Wen, H.: Systematical approach of formulation and process development using roller compaction. Eur. J. Pharm. BioPharm. 73(2), 219–229 (2009)

    Article  Google Scholar 

  109. Tho, I., Bauer-Brandl, A.: Quality by design (QbD) approaches for the compression step of tableting. Expert Opin. Drug Deliv. 8(12), 1631–1644 (2011)

    Article  Google Scholar 

  110. Tok, A., et al.: Monitoring granulation rate processes using three PAT tools in a pilot-scale fluidized bed. AAPS PharmSciTech 9(4), 1083–1091 (2008)

    Article  Google Scholar 

  111. Vonk, P., et al.: Growth mechanisms of high-shear pelletisation. Int. J. Pharm. 157, 93–102 (1997)

    Article  Google Scholar 

  112. Waldie, B.: Growth mechanism and the dependence of granule size on drop size in fluidised bed granulation. Chem. Eng. Sci. 46(11), 2781–2785 (1991)

    Article  Google Scholar 

  113. Walker, G.M., et al.: Drum granulation of NPK fertilizers. Powder Technol. 107(3), 282–288 (2000)

    Article  Google Scholar 

  114. Wang, F.Y., Cameron, I.T.: Review and future directions in the modelling and control of continuous drum granulation. Powder Technol. 124(3), 238–253 (2002)

    Article  Google Scholar 

  115. Watano, S.: Direct control of wet granulation processes by image processing system. Powder Technol. 117(1–2), 163–172 (2001)

    Article  Google Scholar 

  116. Watano, S., et al.: Measurement of moisture content by IR sensor in fluidized bed granulation: effects of operating variables on the relationship between granule moisture content and absorbance of IR spectra. Chem. Pharm. Bull. 44, 1267–1269 (1996)

    Article  Google Scholar 

  117. Watano, S., Miyanami, K.: Image processing for on-line monitoring of granule size distribution and shape in fluidized bed granulation. Powder Technol. 83(1), 55–60 (1995)

    Article  Google Scholar 

  118. Watano, S., Takashima, H., Miyanami, K.: Scale-up of agitation fluidized bed granulation. V. Effect of moisture content on scale-up characteristics. Chem. Pharm. Bull. 45(4), 710–714 (1997)

    Article  Google Scholar 

  119. Watano, S., Yamamoto, A., Miyanami, K.: Effects of operational variables on the properties of granules prepared by moisture control method in tumbling fluidised bed granulation. Chem. Pharm. Bull. 42(1), 133–137 (1994)

    Article  Google Scholar 

  120. Wauters, P.A.L., et al.: Growth and compaction behaviour of copper concentrate granules in a rotating drum. Powder Technol. 124(3), 230–237 (2002)

    Article  Google Scholar 

  121. Yu, W., Erickson, K.: Chord length characterization using focused beam reflectance measurement probe – methodologies and pitfalls. Powder Technol. 185(1), 24–30 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Emady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Emady, H., Hapgood, K., Smith, R. (2016). Granulation and Tabletting. In: Merkus, H., Meesters, G. (eds) Production, Handling and Characterization of Particulate Materials. Particle Technology Series, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-20949-4_4

Download citation

Publish with us

Policies and ethics