Skip to main content

Discrete State Degradation Models

  • Chapter
  • First Online:
Reliability and Life-Cycle Analysis of Deteriorating Systems

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

  • 1796 Accesses

Abstract

This chapter presents and discusses models where the system state, as it degrades, takes values in a discrete state space. Furthermore, it is assumed that the change of the system state through time may occur at discrete or continuous points in time according to certain rules. These models assume that the system moves through a sequence of increasing damage states until failure or intervention. Under these assumptions, most models presented in this chapter are based on Markov processes and in particular on Markov chains, which may be discrete or continuous in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term periodic means that the Markov chain can revisit a state only on steps that are a multiple of some integer \(k>1\).

References

  1. E. Çinlar, Introduction to Stochastic Processes (Prentice Hall, New Jersey, 1975)

    MATH  Google Scholar 

  2. S.M. Ross, Introduction to Stochastic Dynamic Programming (Academic Press, New York, 1983)

    MATH  Google Scholar 

  3. S.M. Ross, Stochastic Processes, 2nd edn. (Wiley, New York, 1996)

    MATH  Google Scholar 

  4. R.A. Howard. Dynamic probabilistic systems, volume II: semi-Markov and decision processes, 2nd edn. (Wiley, New York, 2007)

    Google Scholar 

  5. D.R. Cox, A use of complex probabilities in the theory of stochastic processes. Math. Proc. Camb. Philos. Soc. 51, 313–319 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  6. M.F. Neuts, K.S. Meier, On the use of phase type distributions in reliability modelling of systems with two components. OR Spektrum 2, 227–234 (1981)

    Article  MATH  Google Scholar 

  7. M.F. Neuts, Structured stochastic matrices of M/G/1 type and their applications. Math. Proc. Camb. Philos. Soc. New York (1985)

    Google Scholar 

  8. J.V. Carnahan, W.J. Davis, M.Y. Shahin, Optimal maintenance decisions for pavement management. J. Trans. Eng. ASCE 113(5), 554–572 (1987)

    Article  Google Scholar 

  9. Federal Highway Administration (FHA). Recording and coding guide for structure inventory and appraisal of the nation’s bridges. U.S. Department of Transportation, Washington D.C. (1979)

    Google Scholar 

  10. S. Madanat, R. Mishalani, W.H.W. Ibrahim, Estimation of infrastructure transition probabilities from condition rating data. J. Infrastruct. Syst. ASCE 1(2), 120–125 (1995)

    Article  Google Scholar 

  11. A.A. Butt, M.Y. Shahin, K.J. Feighan, S.H. Carpenter, Pavement performance prediction model using the markov process. Trans. Res. Rec. 1123, 12–19 (1987)

    Google Scholar 

  12. H.-S. Baik, H.S. Jeong, D.M. Abraham, Estimating transition probabilities in markov chain-based deterioration models for management of wastewater systems. J. Water Resour. Plan. Manag. ASCE 132(15), 15–24 (2006)

    Article  Google Scholar 

  13. D.H. Tran, B.J.C. Perera, A.W.M. Ng, Hydraulic deterioration models for storm-water drainage pipes: ordered probit versus probabilistic neural network. J. Comput. Civil Eng. ASCE 24, 140–150 (2010)

    Article  Google Scholar 

  14. S.B. Ortiz-Garc, J.J. Costello, M.S. Snaith, Derivation of transition probability matrices for pavement deterioration modeling. J. Trans. Eng. ASCE 132(2), 141–161 (2006)

    Article  Google Scholar 

  15. G. Morcous, Performance prediction of bridge deck systems using markov chains. J. Perform. Constr. Facil. ASCE 20(2), 146–155 (2006)

    Article  Google Scholar 

  16. M. Ben-Akiva, R. Ramaswamy, An approach for predicting latent infrastructure facility deterioration. Trans. Sci. 27(2), 174–193 (1993)

    Article  MATH  Google Scholar 

  17. Federal Highway Administration (FHA). National Bridge Inventory (NBI), Washington D.C. (2011). http://www.fhwa.dot.gov/bridge/nbi.htm

  18. M. Hauskrecht, Monte Carlo approximations to continuous-time semi-Markov processes. Technical Report: CS-03-02, Department of Computer Science, University of Pittsburgh (2002)

    Google Scholar 

  19. G. Latouche, V. Ramaswami, Introduction to matrix analytic methods in stochastic modeling (Society for Industrial and Applied Mathematics, Philadelphia, 1999)

    Book  MATH  Google Scholar 

  20. E.P.C. Kao, An Introduction to Stochastic Processes (Duxbury Press, Belmont, 1997)

    Google Scholar 

  21. C. O’Cinneide, Characterization of the phase-type distribution. Commun. Stat. Stoch. Models 6, 1–57 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. M.F. Neuts, R. Pérez-Ocón, I. Torres-Castro, Repairable models with operating and repair times governed by phase type distributions. Adv. Appl. Probab. 32, 468–479 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Akhavan-Tabatabaei, F. Yahya, J.G. Shanthikumar, Framework for cycle time approximation of toolsets. IEEE Trans. Semicond. Manuf. 25(4), 589–597 (2012)

    Article  Google Scholar 

  24. O.O. Aalen, Phase type distributions in survival analysis. Scand. J. Stat. 22, 447–463 (1995)

    MATH  Google Scholar 

  25. S. Asmussen, F. Avram, M.R. Pistorius, Russian and american put options under exponential phase-type lévy models. Stoch. Process. Appl. 109, 79–111 (2004)

    Article  MATH  Google Scholar 

  26. A. Bobbio, A. Horváth, M. Telek, Matching three moments with minimal acyclic phase type distributions. Stoch. Models 21, 303–326 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Osogami and M. Harchol-Balter. A closed-form solution for mapping general distributions to minimal PH distributions. Computer Performance Evaluation. Modelling Techniques and Tools., 63(6):200–217, 2003

    Google Scholar 

  28. A. Thümmler, P. Buchholz, M. Telek, A novel approach for phase-type fitting with the em algorithm. IEEE Trans. Dependable Secur. Comput. 3(3), 245–258 (2006)

    Article  Google Scholar 

  29. J.P. Kharoufeh, C.J. Solo, M.Y. Ulukus, Semi-markov models for degradation based reliability. IIE Trans. 42(8), 599–612 (2010)

    Article  Google Scholar 

  30. M.A. Johnson, M.R. Taaffe, Matching moments to phase distributions: mixtures of erlang distributions of common order. Stoch. Models 5, 711–743 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. M.A. Johnson, M.R. Taaffe, An investigation of phase-distribution moment-matching algorithms for use in queueing models. Queueing Syst. 8, 129–148 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. M.A. Johnson, M.R. Taaffe, A graphical investigation of error bounds for moment-based queueing approximations. Queueing Syst. 8, 295–312 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Asmussen, O. Nerman, M. Olsson, Fitting phase type distributions via the em algorithm. Scand. J. Stat. 23, 419–441 (1996)

    MATH  Google Scholar 

  34. A. Riska, V. Diev, E. Smimi, Efficient fitting of long-tailed data sets into phase-type distributions. SIGMETRICS Perform. Eval. Rev. 30, 6–8 (2002)

    Article  Google Scholar 

  35. P. Reinecke, T. Krauß, K. Wolter, Cluster-based fitting of phase-type distributions to empirical data. Comput. Math. Appl. 64, 3840–3851 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Riascos-Ochoa, M. Sánchez-Silva, R. Akhavan-Tabatabaei, Reliability analysis of shock-based deterioration using phase-type distributions. Probab. Eng. Mech. 38, 88–101 (2014)

    Article  Google Scholar 

  37. Y. Mori, B. Ellingwood, Maintaining reliability of concrete structures. i: role of inspection/repair. J. Struct. ASCE 120(3), 824–835 (1994)

    Article  Google Scholar 

  38. K. Sobczyk, Stochastic models for fatigue damage of materials. Adv. Appl. Probab. 19, 652–673 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Li, L. Sun, J. Weiping, Z. Wang, The paris law in metals and ceramics. J. Mater. Sci. Lett. 14, 1493–1495 (1995)

    Article  Google Scholar 

  40. J.M. Van Noortwijk, A survey of the application of gamma processes in maintenance. Reliab. Eng. Syst. Saf. 94, 2–21 (2009)

    Article  Google Scholar 

  41. T. Utsu, Y. Ogata, R.S. Matsuura, The centenary of the omori formula for a decay law of after shock activity. J. Phys. Earth 43, 1–33 (1995)

    Article  Google Scholar 

  42. A. Helmstetter, D. Sornette, Subcritical and supercritical regimes in epidemic models of earthquake aftershocks. J. Geophys. Res. 107, 22–37 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Sánchez-Silva .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sánchez-Silva, M., Klutke, GA. (2016). Discrete State Degradation Models. In: Reliability and Life-Cycle Analysis of Deteriorating Systems. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-20946-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20946-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20945-6

  • Online ISBN: 978-3-319-20946-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics