Skip to main content

Types of PCMs and Their Selection

  • Chapter
  • First Online:
Thermal Energy Storage Using Phase Change Materials

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

This chapter introduces the key physical properties of PCMs that govern their successful thermal performance. The main classifications of PCMs are presented: organic, inorganic and metallic, with a discussion of the common applications in which each classification is used. The advantages and disadvantages of each type are discussed. Typical properties of many common PCMs are tabulated and references provided for more information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leoni N, Amon CH (1997) Transient thermal design of wearable computers with embedded electronics using phase change materials. In: Proceedings 32nd national heat transfer conference, vol 5, pp 49–56

    Google Scholar 

  2. O’Connor W, Warzoha R, Weigand R, Fleischer AS, Wemhoff AP (2014) Thermal property prediction and measurement of organic phase change materials in the liquid phase at the melting point. Appl Energy 132:496–506

    Article  Google Scholar 

  3. Warzoha R, Weigand R, Fleischer AS (2015) Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers. Appl Energy 137:716–725

    Article  Google Scholar 

  4. Warzoha R, Sanusi O, McManus B, Fleischer AS (2013) Development of methods to fully saturate carbon foam with paraffin wax phase change material for energy storage. J Sol Energy Eng 135:021007

    Google Scholar 

  5. Chintakrinda K, Warzoha R, Weinstein RD, Fleischer AS (2012) Quantification of the impact of embedded graphite nanofibers on the transient thermal response of paraffin phase change material exposed to high heat fluxes. J Heat Transf 134:071901

    Article  Google Scholar 

  6. Cai Y, Gao C, Zhang T, Zhang Z, Wei Q, Du J, Hu Y, Song L (2013) Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats. Renew Energy 109:163–170

    Article  Google Scholar 

  7. Sari A, Bicer A (2012) Thermal energy storage properties and thermal reliability of some fatty acid esters/building materials composites as novel form stable PCMs. Sol Energy Mater Sol Cells 101:114–122

    Article  Google Scholar 

  8. Grodzka PG (1970) Study of phase-change materials for a thermal control system. Lockheed Missiles & Space Company, Denver

    Google Scholar 

  9. Warzoha R, Fleischer AS (2014) Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks. Int J Heat Mass Transf 79:314–323

    Article  Google Scholar 

  10. Javani N, Dincer I, Naterer GF, Yilbas BS (2014) Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles. Int J Heat Mass Transf 72:690–703

    Article  Google Scholar 

  11. Zalba B, Marin JM, Caberza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283

    Article  Google Scholar 

  12. Kenisarin M, Mahkamov M (2007) Solar energy storage using PCMs. Renew Sustain Energy Rev 11:1913–1965

    Article  Google Scholar 

  13. Sharma SD, Sagara K (2005) Latent heat storage materials and systems: a review. Int J Green Energy 2:1–56

    Article  Google Scholar 

  14. Denholm P, Mehos M (2011) Enabling greater penetration of solar power via the use of CSP with thermal energy storage. NREL technical report:NREL/TP-6A20-52978

    Google Scholar 

  15. Robak CW, Bergman TL, Faghri A (2011) Economic evaluation of latent heat thermal energy storage using embedded thermosyphons for concentrating solar power applications. Sol Energy 85:2461–2473

    Article  Google Scholar 

  16. Feldhoff JF, Schmitz K, Eck M, Schnatbaum-Laumann L, Laing D, Ortiz-Vives F, Schulte-Fischedick J (2012) Comparative system analysis of direct steam generation and synthetic oil parabolic trough power plants with integrated thermal storage. Sol Energy 86:520–530

    Article  Google Scholar 

  17. Rathod MK, Banerjee J (2013) Thermal stability of phase change materials used in latent heat energy storage systems :a review. Renew Sustain Energy Rev 18:246–258

    Article  Google Scholar 

  18. Peng Q, Wei X, Ding J, Yang J, Yang X (2008) High temperature thermal stability of molten salt materials. Int J Energy Res 32:1164–1174

    Article  Google Scholar 

  19. Kimura H, Kai J (1984) Phase change stability of CaCl2·6H2O. Sol Energy 33:49–55

    Article  Google Scholar 

  20. Ge H, Liu J (2013) Keeping smart phones cool with gallium. J Heat Transf 135:054503

    Article  Google Scholar 

  21. Ge H, Li H, Mei S, Liu J (2013) Low melting point liquid metals as a new class of phase change material: an emerging energy frontier. Renew Sustain Energy Rev 21:331–346

    Article  Google Scholar 

  22. Khare S, Dell’Amico M, Knight C, McGarry S (2012) Selection of materials for high temperature latent heat energy storage. Sol Energy Mater Sol Cells 107:20–27

    Google Scholar 

  23. Kensarian MM (2010) High-temperature phase change materials for thermal energy storage. Renew Sustain Energy Rev 14:955–970

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy S. Fleischer .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Fleischer, A.S. (2015). Types of PCMs and Their Selection. In: Thermal Energy Storage Using Phase Change Materials. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-20922-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20922-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20921-0

  • Online ISBN: 978-3-319-20922-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics