Skip to main content

3D Object Pose Refinement in Range Images

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9163))

Included in the following conference series:

Abstract

Estimating the pose of objects from range data is a problem of considerable practical importance for many vision applications. This paper presents an approach for accurate and efficient 3D pose estimation from 2.5D range images. Initialized with an approximate pose estimate, the proposed approach refines it so that it accurately accounts for an acquired range image. This is achieved by using a hypothesize-and-test scheme that combines Particle Swarm Optimization (PSO) and graphics-based rendering to minimize a cost function of object pose that quantifies the misalignment between the acquired and a hypothesized, rendered range image. Extensive experimental results demonstrate the superior performance of the approach compared to the Iterative Closest Point (ICP) algorithm that is commonly used for pose refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://campar.in.tum.de/Main/StefanHinterstoisser.

References

  1. Besl, P., McKay, N.: A method for registration of 3-D shapes. PAMI 14(2), 239–256 (1992)

    Article  Google Scholar 

  2. Bouaziz, S., Tagliasacchi, A., Pauly, M.: Sparse iterative closest point. Comput. Graph. Forum 32(5), 113–123 (2013)

    Article  Google Scholar 

  3. Cao, T.-T., Tang, K., Mohamed, A., Tan, T.-S.: Parallel banding algorithm to compute exact distance transform with the GPU. In: I3D, pp. 83–90 (2010)

    Google Scholar 

  4. Choi, C., Christensen, H.: 3D pose estimation of daily objects using an RGB-D camera. In: IROS, pp. 3342–3349 (2012)

    Google Scholar 

  5. Collet, A., Martinez, M., Srinivasa, S.: The MOPED framework: object recognition and pose estimation for manipulation. Int. J. Robot. Res. 30(10), 1284–1306 (2011)

    Article  Google Scholar 

  6. Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and robust 3D object recognition. In: CVPR, pp. 998–1005, June 2010

    Google Scholar 

  7. Felzenszwalb, P., Huttenlocher, D.: Distance transforms of sampled functions. Theory Comput. 8(19), 415–428 (2012)

    Article  MathSciNet  Google Scholar 

  8. Fischer, J., Bormann, R., Arbeiter, G., Verl, A.: A feature descriptor for texture-less object representation using 2D and 3D cues from RGB-D data. In: ICRA, pp. 2112–2117 (2013)

    Google Scholar 

  9. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., Navab, N.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Horn, B.: Closed-form solution of absolute orientation using unit quaternions. J. Optical Soc. Am. A 4(4), 629–642 (1987)

    Article  MathSciNet  Google Scholar 

  12. Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. PAMI 21(5), 433–449 (1999)

    Article  Google Scholar 

  13. Khoshelham, K., Elberink, S.: Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors 12(2), 1437–1454 (2012)

    Article  Google Scholar 

  14. Lourakis, M., Zabulis, X.: Model-based pose estimation for rigid objects. In: Chen, M., Leibe, B., Neumann, B. (eds.) ICVS 2013. LNCS, vol. 7963, pp. 83–92. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Mian, A., Bennamoun, M., Owens, R.: Automatic correspondence for 3D modeling: an extensive review. Int. J. Shape Model. 11(02), 253–291 (2005)

    Article  MATH  Google Scholar 

  16. Park, I., Germann, M., Breitenstein, M., Pfister, H.: Fast and automatic object pose estimation for range images on the GPU. Mach. Vis. Appl. 21(5), 749–766 (2010)

    Article  Google Scholar 

  17. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)

    Article  Google Scholar 

  18. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 3DIM, pp. 145–152 (2001)

    Google Scholar 

  19. Rusu, R., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: ICRA, pp. 3212–3217 (2009)

    Google Scholar 

  20. Sobol, I.: Distribution of points in a cube and approximate evaluation of integrals. U.S.S.R. Comput. Maths. Math. Phys. 7, 86–112 (1967)

    Article  MathSciNet  Google Scholar 

  21. Sun, M., Bradski, G., Xu, B.-X., Savarese, S.: Depth-encoded hough voting for joint object detection and shape recovery. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 658–671. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Tejani, A., Tang, D., Kouskouridas, R., Kim, T.-K.: Latent-class hough forests for 3D object detection and pose estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VI. LNCS, vol. 8694, pp. 462–477. Springer, Heidelberg (2014)

    Google Scholar 

  23. Tombari, F., Salti, S., di Stefano, L.: A combined texture-shape descriptor for enhanced 3D feature matching. In: ICIP, pp. 809–812 (2011)

    Google Scholar 

  24. Wang, W., Chen, L., Liu, Z., Khnlenz, K., Burschka, D.: Textured/textureless object recognition and pose estimation using RGB-D image. J. Real-Time Image Process. 1–16 (2013)

    Google Scholar 

  25. Zhang, X., Hu, W., Maybank, S., Li, X., Zhu, M.: Sequential particle swarm optimization for visual tracking. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

Download references

Acknowledgements

This work has received funding from the EC FP7 programme under grant no. 270138 DARWIN and by FORTH-ICS internal RTD Programme “Ambient Intelligence and Smart Environments”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xenophon Zabulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zabulis, X., Lourakis, M., Koutlemanis, P. (2015). 3D Object Pose Refinement in Range Images. In: Nalpantidis, L., Krüger, V., Eklundh, JO., Gasteratos, A. (eds) Computer Vision Systems. ICVS 2015. Lecture Notes in Computer Science(), vol 9163. Springer, Cham. https://doi.org/10.1007/978-3-319-20904-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20904-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20903-6

  • Online ISBN: 978-3-319-20904-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics