User Experience Evaluation Towards Cooperative Brain-Robot Interaction

  • Chris S. CrawfordEmail author
  • Marvin Andujar
  • France Jackson
  • Sekou Remy
  • Juan E. Gilbert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9169)


Brain-Robot Interaction (BRI) research has mainly focused on analyzing system’s performance through objective data. Recently research on Brain-Computer Interfaces (BCI) has begun moving towards applications that go beyond the lab and medical settings. To create successful BRI applications in the future for healthy users User Experience (UX) should be evaluated throughout the development process. This paper discusses single and cooperative BRI systems and analyzes affective and objective task performance data collected while cognitively controlling a robot. Also this paper discusses how this approach can benefit future research on the usability of BRI applications.


Cooperative brain-robot interaction Brain-computer interface User experience Human-computer interaction 


  1. 1.
    Wolpaw, J.R., Wolpaw, E.W.: Brain-computer interfaces: something new under the sun. In: Brain-Computer Interfaces Principles and Practice, pp. 3–12. Oxford University Press, New York, New York (2012)Google Scholar
  2. 2.
    van de Laar, B., Gürkök, H., Plass-Oude Bos, D., Nijboer, F., Nijholt, A.: Perspectives on user experience evaluation of brain-computer interfaces. In: Stephanidis, C. (ed.) Universal Access in HCI, Part II, HCII 2011. LNCS, vol. 6766, pp. 600–609. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Szafir, D., Mutlu, B.: Pay attention! designing adaptive agents that monitor and improve user engagement. In: CHI 2012 Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems, Austin, Texas, USA, pp. 11–20. New York, NY, 5–10 May 2012Google Scholar
  4. 4.
    Andujar, M., Gilbert, J.E.: Let’s learn! enhancing user’s engagement levels through passive brain- computer interfaces. In: CHI 2013 Extended Abstracts, pp. 703–708. ACM Press (2013)Google Scholar
  5. 5.
    Wang, Y., Jung, T.P.: BA collaborative brain-computer interface for improving human performance. PLoS ONE 6(5), e20422 (2011)CrossRefGoogle Scholar
  6. 6.
    Nijholt, A., Gürkök, H.: Multi-brain games: cooperation and competition. In: Universal Access in Human-Computer Interaction. Design Methods, Tools, and Interaction Techniques for eInclusion, pp. 652–661. Springer, Berlin, Heidelberg (2013)Google Scholar
  7. 7.
    Hjelm, S.I., Browall, C.: Brainball – using brain activity for cool competition. In: Proceedings of NordiCHI (2001)Google Scholar
  8. 8.
    Gürkök, H., Nijholt, A., Poel, M., Obbink, M.: Evaluating a multi-player brain–computer interface game: challenge versus co-experience. Entertainment Comput. 4(3), 195–203 (2013)CrossRefGoogle Scholar
  9. 9.
    Bonnet, L., Lotte, F., Lécuyer, A.: Two brains, one game : design and evaluation of a multiuser BCI video game based on motor imagery. IEEE Trans. Comput. Intell. AI Games 5(2), 185–198 (2013)CrossRefGoogle Scholar
  10. 10.
    Eckstein, M.P., Das, K., Pham, B.T., Peterson, M.F., Abbey, C.K., Sy, J.L., Giesbrecht, B.: Neural decoding of collective wisdom with multi-brain computing. NeuroImage 59(1), 94–108 (2012). doi: 10.1016/j.neuroimage.2011.07.009 CrossRefGoogle Scholar
  11. 11.
    Obbink, M., Gürkök, H., Bos, D.P.O., Hakvoort, G., Poel, M., Nijholt, A.: Social interaction in a cooperative brain-computer interface game. In: Proceedings of 4th International ICST Conference on Intelligent Technologies for Interactive Entertainment, 2012, pp. 183–192. Genoa, Italy (2012)Google Scholar
  12. 12.
    Nijholt, A.: Towards multimodal, multi-party, and social brain-computer interfacing. In: Camurri, A., Costa, C. (eds.) INTETAIN 2011. LNICST, vol. 78, pp. 12–17. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Poli, R., Cinel, C., Matran-Femandez, A., Sepulveda, F., Stoica, A.: Towards cooperative brain-computer interfaces for space navigation. In: Proceedings of the International Conference on Intelligent User Inteljaces (lUI), pp. 19–22, Santa Monica, CA, USA (2013)Google Scholar
  14. 14.
    Pope, A.T., Bogart, E.H., Bartolome, D.S.: Biocybernetic system evaluates indices of operator engagement in automated task. Biol. Psychol. 40(1–2), 187–195 (1995)CrossRefGoogle Scholar
  15. 15.
    Moore Jackson, M., Mappus, R.: Applications for brain-computer interfaces. In: Nijholt, A., Tan, D. (eds.) Brain-Computer Interfaces: Applying our Minds to Human-Computer Interaction, pp. 89–103. Springer-Verlag London Ltd., London (2010)Google Scholar
  16. 16.
    Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., Pfurtscheller, G.: Brain– computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans. Neural Syst. Rehab. Eng. 15, 473–482 (2007)CrossRefGoogle Scholar
  17. 17.
    Barbero, A., Grosse-Wentrup, M.: Biased feedback in brain–computer interfaces. J. Neuroeng. Rehabil. 7(1), 34 (2010)CrossRefGoogle Scholar
  18. 18.
    Plass-Oude Bos, D., Poel, M., Nijholt, A.: A study in user-centered design and evaluation of mental tasks for BCI. In: Lee, K.-T., Tsai, W.-H., Liao, H.-Y.M., Chen, T., Hsieh, J.-W., Tseng, C.-C. (eds.) MMM 2011 Part II. LNCS, vol. 6524, pp. 122–134. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Chris S. Crawford
    • 1
    Email author
  • Marvin Andujar
    • 1
  • France Jackson
    • 1
  • Sekou Remy
    • 2
  • Juan E. Gilbert
    • 1
  1. 1.Computer and Information Science and Engineering DepartmentUniversity of FloridaGainesvilleUSA
  2. 2.School of ComputingClemson UniversityClemsonUSA

Personalised recommendations