Behavioural Variables Analysis in Mobile Environments

  • Denise MarczalEmail author
  • Plinio Thomaz Aquino Junior
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9187)


Due to the recent proliferation of mobile applications, it has become essential to obtain a better understanding of how people use their devices and applications. However, it is not always possible to reproduce the chaotic environment where the interactions between users and applications take place. Based on this fact, the present study presents a mechanism for the collection and connection of variables of interaction (touches, navigation between screens, etc.) and variables of mobility (sensor data, such as GPS), by the means of an experiment performed in the application made available at application stores and used by real users, performing daily tasks. With the analysis of the data collected it is expected to understand user behavior during interaction and determine usage patterns associating the variables of mobility with the variables of interaction that provide new ideas for interface projects.


Mobile usability Variables of mobility Large-scale studies 



To FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for financial support.


  1. 1. app store metrics (2014)Google Scholar
  2. 2.
    Balagtas-Fernandez, F., Hussmann, H.: A methodology and framework to simplify usability analysis of mobile applications. In: 24th IEEE/ACM International Conference on Automated Software Engineering, ASE 2009, November 2009, pp. 520–524 (2009)Google Scholar
  3. 3.
    Banovic, N., Brant, C., Mankoff, J., Dey, A.: Proactivetasks: the short of mobile device use sessions. In: Proceedings of the 16th International Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 243–252. ACM (2014)Google Scholar
  4. 4.
    Barbosa, S.D., da Silva, B.S.: Interacao Humano-Computador. Elsevier, Brasil (2010)Google Scholar
  5. 5.
    Bohmer, M.: Understanding and supporting mobile application usage. Ph.D. thesis, Univesitat des Saarlandes, Postfach 151141, 66041 Saarbracken (2013)Google Scholar
  6. 6.
    Bohmer, M., Hecht, B., Schoning, J., Krüger, A., Bauer, G.: Falling asleep with angry birds, facebook and kindle: a large scale study on mobile application usage. In: Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, MobileHCI 2011, pp. 47–56. ACM, New York (2011)Google Scholar
  7. 7.
    Bohmer, M., Lander, C., Krüger, A.: What’s in the apps for context?: extending a sensor for studying app usage to informing context-awareness. In: Proceedings of the 2013 ACM conference on Pervasive and Ubiquitous Computing Adjunct Publication, pp. 1423–1426 (2013)Google Scholar
  8. 8.
    Brown, B., McGregor, M., Laurier, E.: iphone in vivo: video analysis of mobile device use. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 1031–1040. ACM, New York (2013)Google Scholar
  9. 9.
    Brown, B., McGregor, M., McMillan, D.: 100 days of iphone use: understanding the details of mobile device use. In: Proceedings of the 16th International Conference On Human-Computer Interaction with Mobile Devices and Services, pp. 223–232. ACM (2014)Google Scholar
  10. 10.
    Do, T.M.T., Blom, J., Gatica-Perez, D.: Smartphone usage in the wild: a large-scale analysis of applications and context. In: Proceedings of the 13th International Conference On Multimodal Interfaces, pp. 353–360. ACM (2011)Google Scholar
  11. 11.
    Falaki, H., Mahajan, R., Estrin, D.: Systemsens: a tool for monitoring usage in smartphone research deployments. In: Proceedings of the Sixth International Workshop on MobiArch, pp. 25–30. ACM (2011)Google Scholar
  12. 12.
    Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.: Diversity in smartphone usage. In: Proceedings of the 8th International Conference On Mobile Systems, Applications, and Services, pp. 179–194. ACM (2010)Google Scholar
  13. 13.
    Ferreira, D., Goncalves, J., Kostakos, V., Barkhuus, L., Dey, A.K.: Contextual experience sampling of mobile application micro-usage. In: Proceedings of the 16th International Conference on HCI with Mobile Devices and Services, pp. 91–100. ACM (2014)Google Scholar
  14. 14.
    Gencer, M., Bilgin, G., Zan, O., Voyvodaoglu, T.: A new framework for increasing user engagement in mobile applications using machine learning techniques. In: Marcus, A. (ed.) DUXU 2013, Part IV. LNCS, vol. 8015, pp. 651–659. Springer, Heidelberg (2013)Google Scholar
  15. 15.
    Hammer, J.C., Yan, T.: Exploiting usage statistics for energy-efficient logical status inference on mobile phones. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers, pp. 35–42. ACM (2014)Google Scholar
  16. 16.
    Henze, N., Pielot, M.: App stores: external validity for mobile HCI. Interactions 20(2), 33–38 (2013)CrossRefGoogle Scholar
  17. 17.
    Humayoun, S.R., Dubinsky, Y.: Mobigolog: formal task modelling for testing user gestures interaction in mobile applications. In: Proceedings of the 1st International Conference on Mobile Software Engineering and Systems, pp. 46–49. ACM (2014)Google Scholar
  18. 18.
    IpsosGoogle: our mobile planet (2014).
  19. 19.
    Jumisko-Pyykkö, S., Vainio, T.: Framing the context of use for mobile HCI. Int. J. Mob. Hum. Comput. Interact. 2(4), 1–28 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kang, J.M., Seo, S.S., Hong, J.K.: Usage pattern analysis of smartphones. In: Network Operations and Management Symposium, 2011 13th Asia-Pacific, pp. 1–8. IEEE (2011)Google Scholar
  21. 21.
    Karkkainen, T., Vaittinen, T., Vaananen-Vainio-Mattila, K.: I don’t mind being logged, but want to remain in control: a field study of mobile activity and context logging. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 163–172. ACM (2010)Google Scholar
  22. 22.
    Kawalek, J., Stark, A., Riebeck, M.: A new approach to analyze human-mobile computer interaction. J. Usability Stud. 3(2), 90–98 (2008)Google Scholar
  23. 23.
    Keele, S.: Guidelines for performing systematic literature reviews in software engineering. Technical report, EBSE Technical Report EBSE-2007-01 (2007)Google Scholar
  24. 24.
    Kronbauer, A.H., Santos, C.A.S.: Um modelo de avaliação da usabilidade baseado na captura automática de dados de interação do usuário em ambientes reais. In: 5th Latin American Conference on Human-Computer Interaction, Brazil, pp. 114–123 (2011)Google Scholar
  25. 25.
    Kronbauer, A.H., Santos, C.A., Vieira, V.: Um estudo experimental de avaliacao da experiencia dos usuarios de aplicativos moveis a partir da captura automatica dos dados contextuais. In: Brazilian Symposium on Human Factors in Computing Systems, pp. 305–314 (2012)Google Scholar
  26. 26.
    Lee, H., Choi, Y.S., Lee, S., Park, I.: Towards unobtrusive emotion recognition for affective social communication. In: Consumer Communications and Networking Conference (CCNC), pp. 260–264. IEEE (2012)Google Scholar
  27. 27.
    Lettner, F., Holzmann, C.: Automated and unsupervised user interaction logging as basis for usability evaluation of mobile applications. In: 10th International Conference on Advances in Mobile Computing and Multimedia, pp. 118–127. ACM (2012)Google Scholar
  28. 28.
    Levy, M., Shoval, P., Shapira, B., Dayan, A., Tubi, M.: Task modeling infrastructure for analyzing smart phone usage. In: Mobile Business and 2010 Ninth Global Mobility Roundtable (ICMB-GMR), pp. 264–271. IEEE (2010)Google Scholar
  29. 29.
    Ma, X., Yan, B., Chen, G., Zhang, C., Huang, K., Drury, J.: A toolkit for usability testing of mobile applications. In: Zhang, J.Y., Wilkiewicz, J., Nahapetian, A. (eds.) MobiCASE 2011. LNICST, vol. 95, pp. 226–245. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Mayas, C., Hörold, S., Rosenmöller, C., Krömker, H.: Evaluating methods and equipment for usability field tests in public transport. In: Kurosu, M. (ed.) HCI 2014, Part I. LNCS, vol. 8510, pp. 545–553. Springer, Heidelberg (2014)Google Scholar
  31. 31.
    McMillan, D., Morrison, A., Brown, O., Hall, M., Chalmers, M.: Further into the wild: running worldwide trials of mobile systems. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 210–227. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Meng, L., Liu, S., Striegel, A.D.: Analyzing the impact of proximity, location, and personality on smartphone usage. In: 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 293–298. IEEE (2014)Google Scholar
  33. 33.
    Misra, A., Balan, R.K.: LiveLabs: Initial reflections on building a large-scale mobile behavioral experimentation testbed. ACM SIGMOBILE Mob. Comput. Commun. Rev. 17(4), 47–59 (2013)CrossRefGoogle Scholar
  34. 34.
    Mockler, J.: UX suite: a touch sensor evaluation platform. In: Proceedings of the 16th International Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 631–636. ACM (2014)Google Scholar
  35. 35.
    Patro, A., Rayanchu, S., Griepentrog, M., Ma, Y., Banerjee, S.: Capturing mobile experience in the wild: a tale of two apps. In: 9th ACM Conference on Emerging Networking Experiments and Technologies, CoNEXT 2013, pp. 199–210. ACM, New York (2013)Google Scholar
  36. 36.
    Pielot, M., Church, K., Oliveira, R.: An in-situ study of mobile phone notifications. In: 16th International Conference on HCI with Mobile Devices and Services, pp. 233–242. ACM (2014)Google Scholar
  37. 37.
    Porat, T., Schclar, A., Shapira, B.: Mate: a mobile analysis tool for usability experts. In: CHI 2013 Ext Abstracts on Human Factors in Computing Systems, pp. 265–270. ACM (2013)Google Scholar
  38. 38.
    Pretel, I., Lago, A.B.: Remote assessment of hybrid mobile applications: new approach in real environments. In: 9th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6. IEEE (2014)Google Scholar
  39. 39.
    Rahmati, A., Zhong, L.: Studying smartphone usage: lessons from a four-month field study. IEEE Trans. Mob. Comput. 12(7), 1417–1427 (2013)CrossRefGoogle Scholar
  40. 40.
    Sahami Shirazi, A., Henze, N., Dingler, T., Kunze, K., Schmidt, A.: Upright or sideways?: analysis of smartphone postures in the wild. In: 15th International Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 362–371. ACM (2013)Google Scholar
  41. 41.
    Shepard, C., Rahmati, A., Tossell, C., Zhong, L., Kortum, P.: LiveLab: measuring wireless networks and smartphone users in the field. ACM SIGMETRICS Perform. Eval. Rev. 38(3), 15–20 (2011)CrossRefGoogle Scholar
  42. 42.
    Soikkeli, T., Karikoski, J., Hammainen, H.: Diversity and end user context in smartphone usage sessions. In: 2011 5th International Conference on Next Generation Mobile Applications, Services And Technologies (NGMAST), pp. 7–12. IEEE (2011)Google Scholar
  43. 43.
    Srinivasan, V., Moghaddam, S., Mukherji, A., Rachuri, K.K., Xu, C., Tapia, E.M.: Mobileminer: mining your frequent patterns on your phone. In: International Joint Conference on Pervasive and Ubiquitous Computing, pp. 389–400. ACM (2014)Google Scholar
  44. 44.
    Tsiaousis, A., Giaglis, G.: Evaluating the effects of the environmental context-of-use on mobile website usability. In: 7th International Conference on Mobile Business, ICMB 2008, pp. 314–322, July 2008Google Scholar
  45. 45.
    Wagner, D.T., Rice, A., Beresford, A.R.: Device analyzer: largescale mobile data collection. ACM SIGMETRICS Perform. Eval. Rev. 41(4), 53–56 (2014)CrossRefGoogle Scholar
  46. 46.
    Zeni, M., Zaihrayeu, I., Giunchiglia, F.: Multi-device activity logging. In: International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 299–302. ACM (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.IPT - Instituto de Pesquisas Tecnológicas do Estado de SPSão PauloBrazil
  2. 2.Centro Universitário da FEI – Fundação Educacional Inaciana Pe. Sabóia de MedeirosSão Bernardo do CampoBrazil

Personalised recommendations