Emotions Identification to Measure User Experience Using Brain Biometric Signals

  • Ivan CarrilloEmail author
  • Victoria Meza-Kubo
  • Alberto L. Morán
  • Gilberto Galindo
  • Eloisa García-Canseco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9193)


There are different techniques (e.g. direct or indirect observation, questionnaires, etc.) with which it is possible to estimate user experience. Biometric data obtained with different devices (e.g. EEG, EMG) have been used as a source to infer user experience. In this work, as part of the construction of an evaluation model of user experience, we present a preliminary study that seeks to identify emotions using records of brain electrical activity through the visualisation of preset images that stimulate emotions known a priori. The results include identifying emotions of joy and displeasure through brain activity using the Emotive device in older adults.


Electroencephalogram Emotions Elderly people International affective image system 



We acknowledge the support of UABC, specially that in the form of the Programa de Servicio Social 212, and CONACYT by scholarship number 538130 to first author. We also acknowledge the elderly participants from Ensenada, B.C., México for their support and participation in the study.


  1. 1.
    Buiza, C., Soldatos, J., Petsatodis, T., Geven, A., Etxaniz, A., Tscheligi, M.: HERMES: pervasive computing and cognitive training for ageing well. In: Omatu, S., Rocha, M.P., Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009, Part II. LNCS, vol. 5518, pp. 756–763. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Meza-Kubo, V., Morán, A.L.: UCSA: a design framework for usable cognitive systems for the worried-well. Pers. Ubiquit. Comput. 1–11 (2012)Google Scholar
  3. 3.
    Augusto, J.C.: Ambient intelligence : basic concepts and applications. In: Filipe, J., Shishkov, B., Helfert, M. (eds.) ICSOFT 2006. CCIS, vol. 10, pp. 16–26. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Meza-kubo, V.: Guıas para el diseno de aplicaciones de estimulacion cognitiva utilizables por el adulto mayor. Universidad Autonoma de Baja California (2012)Google Scholar
  5. 5.
    Arhippainen, L., Tähti, M.: Empirical evaluation of user experience in two adaptive mobile application prototypes. In: Proceedings of the 2nd International Conference on Mobile and Ubiquitous Multimedia (2003)Google Scholar
  6. 6.
    Arhippainen, L.: Capturing user experience for product design (2003)Google Scholar
  7. 7.
    Mandryk, R.L., Atkins, M.S., Inkpen, K.M.: A continuous and objective evaluation of emotional experience with interactive play environments. In: Proceedings SIGCHI Conference Human Factors Computing Systems - CHI 2006, p. 1027 (2006)Google Scholar
  8. 8.
    Mosquera, G., Daniel, S.: Adquisición de señales electroencefalográficas para el movimiento de un prototipo de silla de ruedas en un sistema BCI (2012)Google Scholar
  9. 9.
    Chai, J., Ge, Y., Liu, Y., Li, W., Zhou, L., Yao, L., Sun, X.: Application of frontal EEG asymmetry to user experience research. In: Harris, D. (ed.) EPCE 2014. LNCS, vol. 8532, pp. 234–243. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Yao, L., Liu, Y., Li, W., Zhou, L., Ge, Y., Chai, J., Sun, X.: Using physiological measures to evaluate user experience of mobile applications. In: Harris, D. (ed.) EPCE 2014. LNCS, vol. 8532, pp. 301–310. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Hakvoort, G., Poel, M., Gurkok, H.: Evaluating user experience with respect to user expectations in brain-computer interface games, pp. 1–4 (2011)Google Scholar
  12. 12.
    Turunen, M., Hakulinen, J., Melto, A., Heimonen, T., Laivo, T., Hella, J.: SUXES—user experience evaluation method for spoken and multimodal interaction, pp. 2567–2570 (2009)Google Scholar
  13. 13.
    Isotani, T., Lehmann, D., Pascual-Marqui, R.D., Fukushima, M., Saito, N., Yagyu, T., Kinoshita, T.: Source localization of brain electric activity during positive, neutral and negative emotional states. Int. Congr. Ser. 1232, 165–173 (2002)CrossRefGoogle Scholar
  14. 14.
    Fredrickson, B.L., Losada, M.F.: Positive affect and the complex dynamics of human flourishing. Am. Psychol. 60(7), 678–686 (2005)CrossRefGoogle Scholar
  15. 15.
    Piqueras Rodriguez, J.-A., Ramos Linares, V., Matínez Gonzalez, A.E., Oblitas Guadalupe, L.A.: Emociones negativas y su impacto en la salud mental y física. Suma Psicológica. 16, 85–112 (2009)Google Scholar
  16. 16.
    Harmon-Jones, E., Sigelman, J.: State anger and prefrontal brain activity: evidence that insult-related relative left-prefrontal activation is associated with experienced anger and aggression. J. Pers. Soc. Psychol. 80(5), 797–803 (2001)CrossRefGoogle Scholar
  17. 17.
    Simón, V.: Mindfulness y neurobiología. Rev. Psicoter. 66, 5–30 (2007)Google Scholar
  18. 18.
    Navarro, F.S., Pedro, J., Lapuente, R.: Amígdala, corteza prefrontal y especialización hemisférica en la experiencia y expresión emocional. Serv. Publicaciones, Murcia Univ., Murcia (2004)Google Scholar
  19. 19.
    Winkler, I., Mark, J., Jager, M., Mihajlovic, V., Tsoneva, T., Winkler, I., Mark, J.: Frontal EEG asymmetry based classification of emotional valence using common spatial patterns. World Acad. Sci. Eng. Technol. 45, 373–378 (2010)Google Scholar
  20. 20.
    Bermúdez Cicchino, A.N.: Técnicas de procesamiento de EEG para detección de eventos (2014). Postgradofcm.Edu.Ar
  21. 21.
    Kostyunina, M.B., Kulikov, M.A.: Frequency characteristics of EEG spectra in the emotions. Neurosci. Behav. Physiol. 26(4), 340–343 (1996)CrossRefGoogle Scholar
  22. 22.
    Coan, J.A., Allen, J.J.B.: Frontal EEG asymmetry as a moderator and mediator of emotion. Biol. Psychol. 67(1–2), 7–49 (2004)CrossRefGoogle Scholar
  23. 23.
    Papousek, I., Freudenthaler, H.H., Schulter, G.: Typical performance measures of emotion regulation and emotion perception and frontal EEG asymmetry in an emotional contagion paradigm. Pers. Individ. Dif. 51(8), 1018–1022 (2011)CrossRefGoogle Scholar
  24. 24.
    Bertron, A., Petry, M., Bruner, R., Mcmanis, M., Zabaldo, D., Martinet, S., Cuthbert, S., Ray, D., Koller, K., Kolchakian, M., Hayden, S.: International affective picture system (IAPS): technical manual and affective ratings (1997)Google Scholar
  25. 25.
    Bradley, M.M., Lang, P.J.: The international affective picture system (IAPS) in the study of emotion and attention. In: Coan, J.A., Allen, J.J.B. (eds.) Handbook of Emotion Elicitation and Assessment, pp. 29–46. Oxford University Press, Oxford (2007)Google Scholar
  26. 26.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Meth. 134, 9–21 (2004). ElsevierCrossRefGoogle Scholar
  27. 27.
    Vecchio, F., Babiloni, C., Buffo, P., Rossini, P.M., Bertini, M.: Inter-hemispherical functional coupling of EEG rhythms during the perception of facial emotional expressions. Clin. Neurophysiol. 124(2), 263–272 (2013)CrossRefGoogle Scholar
  28. 28.
    Mandryk, R.L., Inkpen, K.M., Calvert, T.W., Science, C., Canada, B.C.V.A.: Using psychophysiological techniques to measure user experience with entertainment technologies, vol. 2005 (2005)Google Scholar
  29. 29.
    Marcuse, L.V., Schneider, M., Mortati, K.A., Donnelly, K.M., Arnedo, V., Grant, A.C.: Quantitative analysis of the EEG posterior-dominant rhythm in healthy adolescents. Clin. Neurophysiol. 119, 1778–1781 (2008)CrossRefGoogle Scholar
  30. 30.
    Wheeler, R.E., Davidson, R.J., Tomarken, A.J.: Frontal brain asymmetry and emotional reactivity: a biological substrate of affective style. Psychophysiology 30, 82–89 (1993)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ivan Carrillo
    • 1
    Email author
  • Victoria Meza-Kubo
    • 1
  • Alberto L. Morán
    • 1
  • Gilberto Galindo
    • 1
  • Eloisa García-Canseco
    • 1
  1. 1.Universidad Autónoma de Baja CaliforniaEnsenadaMexico

Personalised recommendations