Advertisement

User Interfaces for Cyber-Physical Systems: Challenges and Possible Approaches

  • Volker Paelke
  • Carsten RöckerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9186)

Abstract

Catchwords such as “Cyber-Physical-Systems” and “Industry 4.0” describe the current development of systems with embedded intelligence. These systems can be characterized by an increasing technical complexity that must be addressed in the user interface. In this paper we analyze the specific requirements posed by the interaction with cyber-physical-systems, present a coordinated approach to these requirements and illustrate our approach with a practical example of an assistance system for assembly workers in an industrial production environment.

Keywords

Industrial IT User-Centered design Usability User interfaces Cyber-Physical-Systems Industry 4.0 Augmented reality Development processes and methods 

References

  1. 1.
    Alt, T., Edelmann, M.: Augmented reality for industrial applications: a new approach to increase productivity. In: Proceedings of the International Conference on Work with Display Units, pp. 380–381 (2002)Google Scholar
  2. 2.
    Azuma, R.: A survey of augmented reality. Presence: Teleoperators Virtual Environ. 6(4), 355–385 (1997)Google Scholar
  3. 3.
    Bauernhansl, T., ten Hompel, M., Vogel-Heuser, B. (eds.): Industrie 4.0 in Produktion, Automatisierung und Logistik. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Fründ, J., Geiger, C., Grafe, M., Kleinjohann, B.: The augmented reality personal digital assistant. In: Proceedings of the International Symposium on Mixed Reality (ISAR 2001) (2001)Google Scholar
  5. 5.
    Heidrich, F., Ziefle, M., Röcker, C., Borchers, J.: A multi-dimensional analysis of input technologies for augmented environments. In: Proceedings of the ACM Augmented Human Conference (AH 2011), Tokyo, Japan, CD-ROM, 12 – 14 MarchGoogle Scholar
  6. 6.
    Holzinger, A., Ziefle, M., Röcker, C.: Human-computer interaction and usability engineering for elderly (HCI4AGING): introduction to the special thematic session. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2010, Part II. LNCS, vol. 6180, pp. 556–559. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    International Organization for Standardization: ISO 9241-210: Ergonomics of Human-System Interaction—Part 210: Human-Centred design for Interactive Systems (2010)Google Scholar
  8. 8.
    Jasperneite, J.: Was hinter Begriffen wie Industrie 4.0 steckt. In: Computer & Automation (2012)Google Scholar
  9. 9.
    Kagermann, H., Wahlster, W., Helbig, J.: Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0, Abschlussbericht des Arbeitskreises Industrie 4.0 (2014). http://www.bmbf.de/pubRD/Umsetzungsempfehlungen_Industrie4_0.pdf. Accessed 28 Nov 2014
  10. 10.
    Lee, E.A.: Cyber Physical Systems: Design Challenges, University of California at Berkeley, Technical Report No. UCB/EECS-2008-8 (2014). http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html. Accessed 28 Nov 2014
  11. 11.
    National Science Foundation: Workshop on Cyber-Physical Systems, Austin, USA, 2006 (2014). http://varma.ece.cmu.edu/cps/. Accessed 28 Nov 2014
  12. 12.
    Nebe, K., Paelke, V.: Usability-engineering-requirements as a basis for the integration with software engineering. In: Jacko, J.A. (ed.) HCI International 2009, Part I. LNCS, vol. 5610, pp. 652–659. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Paelke, V.: Augmented reality in the smart factory - supporting workers in an industry 4.0. environment. In: Proceedings of the International Conference of Emerging Technologies & Factory Automation (ETFA 2014), Barcelona, Spain (2014)Google Scholar
  14. 14.
    Röcker, C.: User-centered design of intelligent environments: requirements for designing successful ambient assisted living systems. In: Proceedings of the Central European Conference of Information and Intelligent Systems (CECIIS 2013), 18–20 September, Varazdin, Croatia, pp. 4–11 (2013)Google Scholar
  15. 15.
    Röcker, C., Ziefle, M., Holzinger, A.: From computer innovation to human integration: current trends and challenges for pervasive health technologies. In: Holzinger, A., Ziefle, M., Röcker, C. (eds.) Pervasive Health - State-of-the-Art and Beyond, pp. 1–17. Springer, London (2014)CrossRefGoogle Scholar
  16. 16.
    Spath, D., Ganschar, O., Gerlach, S., Hämmerle, M., Krause, T., Schlund, S. (eds.): Produktionsarbeit der Zukunft – Industrie 4.0. Fraunhofer, Germany (2013)Google Scholar
  17. 17.
    Spitzencluster: Intelligente Technische Systeme OstWestfalenLippe - it’s OWL (2014). http://www.its-owl.de/home/. Accessed 28 Nov 2014
  18. 18.
    Stöcklein, J., Geiger, C., Paelke, V.: Mixed reality in the loop - design process for interactive mechatronical system. In: Proceedings of the IEEE Virtual Reality Conference (VR 2010), Waltham, MA, USA (2010)Google Scholar
  19. 19.
    van Dam, A.: Post-wimp user interfaces. Commun. ACM 40(2), 63–67 (1997)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ziefle, M., Röcker, C. (eds.): Human-Centered Design of E-Health Technologies: Concepts, Methods and Applications. IGI Publishing, Niagara Falls (2011)Google Scholar
  21. 21.
    Ziegler, J., Pfeffer, J., Urbas, L.: A mobile system for industrial maintenance support based on embodied interaction. In: Proceedings of the International Conference on Tangible, Embedded, and Embodied Interaction (TEI 2011), Funchal, Portugal (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Fraunhofer Application Center Industrial Automation (IOSB-INA)LemgoGermany
  2. 2.Ostwestfalen-Lippe UAS & Fraunhofer IOSB-INALemgoGermany

Personalised recommendations