Skip to main content

Colloidal Solution of 3 nm Bucky Diamond: Primary Particles of Detonation Nanodiamond

  • Conference paper
  • First Online:
Physics of Liquid Matter: Modern Problems

Abstract

The nanodiamond (ND) hydrosol with positively charged \(2.7 \pm 0.3\) nm primary particle s behaves as a hydrophobic colloidal dispersion . The coagulation by inorganic electrolyte s with anion charges of −1, −2, −3, and −4 occurs in line with the Schulze–Hardy rule for “positive” sols. The single-charged anions are arranged according to their coagulating ability in the lyotropic series. The sole exception is the hydrophilic HO ion, which displays much stronger coagulation impact than those of Cl and BF4 ions. This particularizes the acidic nature of the positive charge of the colloidal species . The last-named readily adsorb anionic dyes, which results in batochromic shifts of their absorption band s. Application of an acid-base indicator bromocresol green allowed estimating the value of the interfacial electrical potential of the nanodiamond particles \(\Psi = + 8 9\;{\text{to}}\;\, + 1 2 3\;{\text{mV}},\) depending on the concentration of the hydrosol. These values are higher as compared with those of the zeta-potential , \(\varsigma = + 4 3\,\;{\text{to}}\;\, + 6 2\;{\text{mV}}.\) The size distribution of the dispersed system is strongly concentration-dependent. The dilution of the initial 5.0 wt/vol% ND hydrosol by water results in gradual increase in the average particle size, up to ca. 30 nm in 0.01 % colloidal solution . These results of dynamic light scattering were confirmed by transmission electron microscopy . Accordingly, the viscosity of the hydrosol decreases along with dilution. This phenomenon was explained in terms of the periodic colloidal structure s, or colloidal crystal s, formed in concentrated solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Krueger, J. Mater. Chem. 21, 12571 (2011)

    Article  Google Scholar 

  2. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, Nat. Nano. 7, 11 (2012)

    Article  Google Scholar 

  3. O.A. Shenderova, D.M. Gruen, Ultrananocrystalline diamond: synthesis, properties and applications, 2nd edn. William Andrew Publishing, Norwich (2012)

    Google Scholar 

  4. A. Kumar, P.A. Lin, A. Xue, B. Hao, Y.K. Yap, R.M. Sankaran, Nature Commun 4, 2618 (2013)

    ADS  Google Scholar 

  5. L.Y. Chang, E. Osawa, A.S. Barnard, Nanoscale 3, 958 (2011)

    Article  ADS  Google Scholar 

  6. E. Osawa, in ed. by S. Somiya, Academic Press, Oxford (2013)

    Google Scholar 

  7. G. Taguchi, S. Chowdhury, Y. Wu, Quality Engineering Handbook (Wiley, New York, 2007) pp. 56–123

    Google Scholar 

  8. E. Osawa et al., Under preparation

    Google Scholar 

  9. S. Sasaki, R. Yamanoi, E. Ōsawa, Dispersion of Detonation Nanodiamond: A Progress Report, presented before the 46th Fullerenes-Nanotubes-Graphenes General Symposium. University of Tokyo (2013)

    Google Scholar 

  10. N.O. Mchedlov-Petrossyan, N.A. Vodolazkaya, N.N. Kamneva, in Micelles: Structural Biochemistry, Formation and Functions and Usage, eds. by D. Bradburn, T. Bittinger, Nova Science Pub Inc, New York, (2013), Chap. 1

    Google Scholar 

  11. F. Grieser, C.J. Drummond, J. Phys. Chem. 92, 5580 (1988)

    Article  Google Scholar 

  12. N.O. Mchedlov-Petrossyan, Pure Appl. Chem. 80, 1459 (2008)

    Google Scholar 

  13. N.N. Kamneva, A.Y. Kharchenko, O.S. Bykova, A.V. Sundenko, N.O. Mchedlov-Petrossyan, J. Mol. Liq. 199, 376 (2014)

    Article  Google Scholar 

  14. P. Mukerjee, K. Banerjee, J. Phys. Chem. 68, 3567 (1964)

    Article  Google Scholar 

  15. B.V. Deryagin, Russ. Chem. Rev. 48, 363 (1979)

    Article  ADS  Google Scholar 

  16. L.B. Boinovich, Russ. Chem. Rev. 76, 471 (2007)

    Article  ADS  Google Scholar 

  17. B. Derjaguin, Trans. Faraday Soc. 36, 730 (1940)

    Google Scholar 

  18. J.N. Israelachvili, Intermolecular and Surface Forces: Revised, 3rd edn. (Academic press, Amsterdam 2011)

    Google Scholar 

  19. J. Visser, Adv. Colloid Interface Sci. 3, 331 (1972)

    Article  Google Scholar 

  20. A.S. Barnard, J. Mater. Chem. 18, 4038 (2008)

    Article  Google Scholar 

  21. A.S. Barnard, E. Osawa, Nanoscale 6, 1188 (2014)

    Article  ADS  Google Scholar 

  22. N. O. Mchedlov-Petrossyan, N. N. Kamneva, A. I. Marynin, A. P.Kryshtal, E. Ōsawa. Phys. Chem. Chem. Phys. 17, 16186 (2015)

    Google Scholar 

  23. B.V. Derjaguin, The Theory of Stability of Colloids and Thin Films (Nauka, Moscow, 1986)

    Google Scholar 

  24. B.V. Derjaguin, N.V. Churaev, V.M. Muller, Interfacial Forces (Nauka, Moscow, 1985)

    Google Scholar 

  25. J. Lyklema, J. Colloid Interface Sci. 392, 102 (2013)

    Article  Google Scholar 

  26. J. Hees, A. Kriele, O.A. Williams, Chem. Phys. Lett. 509, 12 (2011)

    Article  ADS  Google Scholar 

  27. J.T. Paci, H.B. Man, B. Saha, D. Ho, G.C. Schatz, J. Phys. Chem. C 117, 17256 (2013)

    Article  Google Scholar 

  28. O.A. Williams, J. Hees, C. Dieker, W. Jäger, L. Kirste, C.E. Nebel, ACS Nano 4, 4824 (2010)

    Article  Google Scholar 

  29. C.A. Leon y Leon, J.M. Solar, V. Calemma, L.R. Radovic, Carbon 30, 797 (1992)

    Google Scholar 

  30. X. Xu, Z. Yu, Y. Zhu, B. Wang, Diam. Relat. Mater. 14, 206 (2005)

    Article  ADS  Google Scholar 

  31. A.N. Zhukov, F.R. Gareeva, A.E. Aleksenskii, Colloid J. 74, 463 (2012)

    Article  Google Scholar 

  32. A.Y. Vul, E.D. Eydelman, M. Inakuma, E. Ōsawa, Diam. Relat. Mater. 16, 2023 (2007)

    Article  ADS  Google Scholar 

  33. I.F. Efremov, Periodic Colloidal Structures (Khimiya, Leningrad, USSR, 1971)

    Google Scholar 

  34. I.F. Efremov, O.G. Us’yarov, Russ. Chem. Rev. 45, 435 (1976)

    Google Scholar 

  35. P. Bartlett, R.H. Ottewill, J. Chem. Phys. 96, 3306 (1992)

    Article  ADS  Google Scholar 

  36. A. Rugge, W.T. Ford, S.H. Tolbert, Langmuir 19, 7852 (2003)

    Article  Google Scholar 

  37. M.V. Avdeev, N.N. Rozhkova,V.L. Aksenov, V.M. Garamus, R. Willumeit, E. Ōsawa, J. Phys. Chem. C 113, 9473 (2009)

    Google Scholar 

  38. M.V. Avdeev, V.L. Aksenov, O.V. Tomchuk, L.A. Bulavin, V.M. Garamus, E. Ōsawa, J. Phys.: Condens. Matter. 25, 445001 (2013)

    Google Scholar 

Download references

Acknowledgments

We are grateful to Ekaterina Vus for measurements with the Zetasizer Nano ZS Malvern Instruments in Aalto University, Espoo, Finland. We also express our gratitude to Professor Paavo Kinnunen, Department of Biomedical Engineering and computational science, Aalto University, Espoo, Finland, for putting to our disposal the above-mentioned apparatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. O. Mchedlov-Petrossyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mchedlov-Petrossyan, N.O. et al. (2015). Colloidal Solution of 3 nm Bucky Diamond: Primary Particles of Detonation Nanodiamond. In: Bulavin, L., Lebovka, N. (eds) Physics of Liquid Matter: Modern Problems. Springer Proceedings in Physics, vol 171. Springer, Cham. https://doi.org/10.1007/978-3-319-20875-6_8

Download citation

Publish with us

Policies and ethics