Skip to main content

The Generalized Similarity Laws and Isocontours in the Thermodynamics of Simple Liquids

  • Conference paper
  • First Online:
Physics of Liquid Matter: Modern Problems

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 171))

  • 766 Accesses

Abstract

Several new similarity relations regarding the universal lines on the density-temperature plane are described. The first of them—the line of the unit compressibility factor or the Zeno-line —gives rise to the general equation for the liquid binodal branch and the universal correlation between the critical and the Zeno-line parameters. The latter relations have allowed us to estimate the critical points of metals, which can not be measured up to now. Besides, there is projective transformation between the linear elements of the lattice gas phase diagram and that of the continuous systems. The relation for the saturation pressure has been obtained on the basis of this correspondence. The other regularities concern to the lines of the ideal enthalpy, the enthalpy minima and the isothermal compressibility maxima. Although initially they were obtained for the van der Waals equation, they have appeared to be valid for the real substances and models described by completely different equations of state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

vdW:

Equation or system—van der Waals equation or system

LJ:

Lennard–Jones system

CP:

The Critical Point

TP:

The Triple Point

Z-line:

Zeno Line

LG:

Lattice Gas

H-line:

Line of ideal enthalpy (H)

References

  1. J.D. van der Waals, Verhan. Konink. Akad. van Wetens 20, 1 (1880)

    Google Scholar 

  2. R. Balescu, Equilibrium and Non-equilibrium Statistical Mechanics (Wiley-Interscience Publication, New York, USA, 1975)

    Google Scholar 

  3. L.P. Cailletet, E.C. Mathias, J. Phys. Théor. Appl. 5, 549 (1886)

    Article  Google Scholar 

  4. F. Hensel, Phil. Trans. R. Soc. London A 356, 97 (1998)

    Article  ADS  Google Scholar 

  5. K. Pitzer, J. Chem. Phys. 7, 583 (1939)

    Article  ADS  Google Scholar 

  6. I.Z. Fisher, Statistical Theory of Liquids (University of Chicago Press, USA, 1964)

    Google Scholar 

  7. B.M. Smirnov, Physics -Uspekhi 44, 1229 (2001)

    Article  ADS  Google Scholar 

  8. M.E. Fisher, Rev. Mod. Phys. 70, 653 (1998)

    Article  ADS  MATH  Google Scholar 

  9. A. Batchinskii, Ann. Phys. 324, 307 (1906)

    Article  Google Scholar 

  10. V.A. Rabinovich, A.A. Vasserman, V.I. Nedostup, Thermophysical Properties of Neon, Argon, Krypton, and Xenon (Hemispere, Berlin, Germany, 1988)

    Google Scholar 

  11. V.I. Nedostup, E.P. Galkevich, Calculation of Thermodynamic Properties of Gases and Liquids by the Ideal Curves Method (Naukova Dumka: Kiev, Ukraine, 1986)

    Google Scholar 

  12. E. Holleran, J. Chem. Phys. 47, 5318 (1967)

    Article  ADS  Google Scholar 

  13. J.G. Powels, J. Phys. C: Solid State Phys. 16, 503 (1983)

    Article  ADS  Google Scholar 

  14. M.C. Kutney, M.T. Reagan, K.A. Smith, J.W. Tester, D.R. Herschbach, J. Phys. Chem. B 104, 9513 (2000)

    Article  Google Scholar 

  15. E.M. Apfelbaum, V.S. Vorob’ev, G.A. Martynov, Chem. Phys. Lett. 413, 342 (2005)

    Article  ADS  Google Scholar 

  16. E.M. Apfelbaum, V.S. Vorob’ev, G.A. Martynov, J. Phys. Chem. B 110, 8474 (2006)

    Google Scholar 

  17. E.M. Apfelbaum, V.S. Vorob’ev, J. Phys. Chem. B 112, 13064 (2008)

    Google Scholar 

  18. E.M. Apfelbaum, V.S. Vorob’ev, Chem. Phys. Lett. 467, 318 (2009)

    Article  ADS  Google Scholar 

  19. E.M. Apfelbaum, V.S. Vorob’ev, J. Phys. Chem B 113, 3521 (2009)

    Google Scholar 

  20. L.P. Filippov, Methods for Calculating and Predicting the Properties of Substances (Edition of Moscow State University, Moscow, Russia, 1988). (in Russian)

    Google Scholar 

  21. E.M. Apfelbaum, V.S. Vorob’ev, J. Chem. Phys. 130, 214111 (2009)

    Article  ADS  Google Scholar 

  22. V.L. Kulinskii, J. Phys. Chem B 114, 2852 (2010)

    Article  Google Scholar 

  23. V.L. Kulinskii, J. Chem. Phys. 133, 034121 (2010)

    Article  ADS  Google Scholar 

  24. E.M. Apfelbaum, V.S. Vorob’ev, J. Phys. Chem. B 114, 9820 (2010)

    Google Scholar 

  25. Q. Wei, D.R. Herschbach, J. Phys. Chem. C 117, 22438 (2013)

    Article  Google Scholar 

  26. V.I. Nedostup, High Temp. 51, 72 (2013)

    Article  Google Scholar 

  27. R. Span, E.W. Lemmon, R.T. Jacobsen, W. Wagner, A. Yokozeki, J. Phys. Chem. Ref. Data 29, 1361 (2000)

    Article  ADS  Google Scholar 

  28. V.V. Brazhkin, V.N. Ryzhov, J. Chem. Phys. 135, 084503 (2011)

    Article  ADS  Google Scholar 

  29. V.V. Brazhkin, A.G. Lyapin, V.N. Ryzhov, K. Tkachenko, YuD Fomin, E.N. Tsiok, Phys. Usp. 55, 1061 (2013)

    Article  ADS  Google Scholar 

  30. E.M. Apfelbaum, V.S. Vorob’ev, J. Phys. Chem. B 117, 7750 (2013)

    Google Scholar 

  31. E.A. Guggenheim, J. Chem. Phys. 13, 253 (1945)

    Article  ADS  Google Scholar 

  32. R.C. Raid, J.M. Prausnitz, T.K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, USA, 1977)

    Google Scholar 

  33. A. Mulero, M.I. Parra, Phys. Chem. Liq. 46, 263 (2008)

    Article  Google Scholar 

  34. http://webbook.nist.gov/chemistry/fluid/

  35. W. Goltzlaff, G. Schonherr, F. Henzel, Z. Phys. Chem., Neue Folge 156, 219 (1988)

    Google Scholar 

  36. V.F. Kozhevnikov, JETP 97, 541 (1990)

    Google Scholar 

  37. E.M. Apfelbaum, V.S. Vorob’ev, Ukr. J Phys. 56, 838 (2011)

    Google Scholar 

  38. J. Timmermans, Bull. Soc. Chim. Belges 26, 205 (1912)

    Google Scholar 

  39. E.M. Apfelbaum, V.S. Vorob’ev, J. Chem. Phys. 139, 046101 (2013)

    Article  ADS  Google Scholar 

  40. E.M. Apfelbaum, V.S. Vorob’ev, Chem. Phys. Lett. 591, 212 (2014)

    Article  ADS  Google Scholar 

  41. L. Riedel, Chem. Ing. Tech. 26, 83 (1954)

    Article  Google Scholar 

  42. R. Gathers, Rep. Progr. Phys. 49, 341 (1986)

    Article  ADS  Google Scholar 

  43. V.E. Fortov, A.N. Dremin, A.A. Leont’ev, High Temp. 23, 984 (1975)

    Google Scholar 

  44. I. Iosilevskiy, V. Gryaznov, J. Nucl. Mater. 344, 30 (2005)

    Article  ADS  Google Scholar 

  45. E.M. Apfelbaum, J. Phys. Chem. B 116, 14660 (2012)

    Article  Google Scholar 

  46. E.M. Apfelbaum, Phys. Rev. E 84, 066403 (2011)

    Article  ADS  Google Scholar 

  47. G.E. Norman, S.V. Starikov, V.V. Stegailov, JETP 114, 792 (2012)

    Article  ADS  Google Scholar 

  48. L.V. Fokin, V.N. Popov, High Temp. 51, 465 (2013)

    Article  Google Scholar 

  49. E. Pahl, D. Figgen, C. Thierfelder, K.A. Peterson, F. Calvo, P. Schwerdtfeger, J. Chem. Phys. 132, l14201 (2010)

    Article  Google Scholar 

  50. A.A. Likalter, Phys. Rev. B 53, 4386 (1996)

    Article  ADS  Google Scholar 

  51. H. Hess, A. Kloss, A. Rakhel, H. Schneidenbach, Int. J. Thermophys. 20, 1279 (1999)

    Article  Google Scholar 

  52. M. Beutl, G. Pottlacher, H. Jaiger, Int. J. Thermophys. 15, 6 (1994)

    Article  Google Scholar 

  53. I.V. Lomonosov, Phase Diagrams and Thermodynamic Properties of Metals at High Pressures and Temperatures. (Doctoral Thesis, Chernogolovka 1999.) (in Russian)

    Google Scholar 

  54. V.L. Kulinskii, J. Chem. Phys. 139, 184119 (2013)

    Article  ADS  Google Scholar 

  55. E.M. Apfelbaum, V.S. Vorob’ev, J. Phys. Chem B 115, 10049 (2011)

    Article  Google Scholar 

  56. W.B. Streett, Physica 76, 59 (1974)

    Article  ADS  Google Scholar 

  57. Q. Yan, H. Liu, Y. Hu, Fluid Phase Equilib. 218, 157 (2004)

    Article  Google Scholar 

  58. Q.L. Yan, H.L. Liu, Y. Hu, East China Univers. Sci. Techn. 22, 188 (1996), 22 188. (in Chinese)

    Google Scholar 

  59. V.S. Vorob’ev, J. Phys. Chem. B 116, 4248 (2012)

    Article  Google Scholar 

  60. F. Lofti, J. Vrabec, J. Fisher, Mol. Phys. 76, 1319 (1992)

    Article  ADS  Google Scholar 

  61. C. Kittel, H. Kroemer, Thermal Physics (W. H. Freeman and Company, New-York, USA, 1980)

    Google Scholar 

  62. J.R. Errington, A.Z. Panagiotopoulos, J. Chem. Phys. 109, 1093 (1998)

    Article  ADS  Google Scholar 

  63. E.H. Abramson, High Pressure Res. Int. J. 31, 549 (2011)

    Google Scholar 

Download references

Acknowledgments

The work is supported by RFBR Grants No 14-08-00536, 14-08-00612, 13-08-12-248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Apfelbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Apfelbaum, E., Vorob’ev, V. (2015). The Generalized Similarity Laws and Isocontours in the Thermodynamics of Simple Liquids. In: Bulavin, L., Lebovka, N. (eds) Physics of Liquid Matter: Modern Problems. Springer Proceedings in Physics, vol 171. Springer, Cham. https://doi.org/10.1007/978-3-319-20875-6_6

Download citation

Publish with us

Policies and ethics