Skip to main content

Thermodynamic and Phase Behavior of Nanofluids

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 171))

Abstract

The importance of thermodynamic and phase behavior of working fluids embedded with nanostructured materials is fundamental to new nanotechnology applications. Considering the extremely large number of different both nanoparticle types and reference fluids, it is obvious that there is need for developing theoretically sound methods of the prompt estimation thermodynamic properties and phase equlibria for emerging working media. The effect of nanoparticles on the critical point shift for classical fluids doped by nanoparticles is examined. Global phase diagrams of two-component fluids with nanoparticles are analyzed. The global phase diagram studies of binary mixtures provide some basic ideas of how the required methods can be developed to visualize the phase behavior of nanofluid blends. The mapping of the global equilibrium surface in the parameter space of the equation of state (EoS) model provides the most comprehensive system of criteria for predicting binary mixture phase behavior. Results of calculations of phase equilibria for some nanofluids are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Choi, Z. Zhang, W. Yu, F. Lockwood, E. Grulke, Appl. Phys. Lett. 79, 2252 (2001)

    Article  ADS  Google Scholar 

  2. J. Eastman, S. Choi, S. Li, W. Yu, L. Thompson, Appl. Phys. Lett. 78, 718 (2001)

    Article  ADS  Google Scholar 

  3. R. Saidura, K. Leong, H. Mohammad, Renew. Sustain. Energy Rev. 15, 1646 (2011)

    Article  Google Scholar 

  4. W. Daungthongsuk, S. Wongwises, Renew. Sustain. Energy Rev. 11(5), 797 (2007)

    Article  Google Scholar 

  5. P. Keblinski, J. Eastman, D. Cahill, Mater. Today 8(6), 36 (2005)

    Article  Google Scholar 

  6. S. Das, S. Choi, H. Patel, Heat Transfer Eng. 27(10), 3 (2006)

    Article  ADS  Google Scholar 

  7. S. Murshed, K. Leong, C. Yang, Appl. Therm. Eng. 28(17–18), 2109 (2008)

    Article  Google Scholar 

  8. C. King, D. Pendlebury, WEB of knowledge—research fronts. http://sciencewatch.com/sites/sw/files/sw-article/media/research-fronts-2013.pdf (2013)

  9. E. Lemmon, R. Span, J. Chem. Eng. Data 51, 785 (2006)

    Article  Google Scholar 

  10. J. Avsec, M. Oblak, Int. J. Heat Mass Transfer 50(21–22), 4331 (2007)

    Article  MATH  Google Scholar 

  11. R. Span, W. Wagner, J. Phys. Chem. Ref. Data 25(6), 1509 (1996)

    Article  ADS  Google Scholar 

  12. P. van Konynenburg, R. Scott, Philos. Trans. R. Soc. Lond. Ser. A 298, 495 (1980)

    Article  ADS  Google Scholar 

  13. A. Varchenko, J. Sov. Math 52(4), 305 (1990)

    Article  Google Scholar 

  14. F. Aicardi, P. Valentin, E. Ferrand, Phys. Chem. Chem. Phys. 4, 884 (2002)

    Article  Google Scholar 

  15. O. Redlich, J. Kwong, Chem. Rev. 44, 233 (1949)

    Article  Google Scholar 

  16. G. Soave, Chem. Eng. Sci. 27, 1197 (1972)

    Article  Google Scholar 

  17. V. Mazur, L. Boshkov, V. Murakhovsky, Phys. Lett. 104A, 415 (1984)

    Article  ADS  Google Scholar 

  18. U. Deiters, J. Pegg, Journ. Chem. Phys. 90, 6632 (1989)

    ADS  Google Scholar 

  19. K. Patel, A. Sunol, Comput. Chem. Eng. 3, 1793 (2009)

    Article  Google Scholar 

  20. M. Cismondi, M. Michelsen, J. of Supercritical Fluids 39, 287 (2007)

    Article  Google Scholar 

  21. S. Artemenko, V. Mazur, Int. J. Refrig. 30, 831 (2007)

    Google Scholar 

  22. M. Richter, M. McLinden, E. Lemmon, J. Chem. Eng. Data 56, 3254 (2011)

    Article  Google Scholar 

  23. J. Calm, G. Hourahan, Eng. Syst. 18(11), 74 (2001)

    Google Scholar 

  24. P. Borzenkov, V. Zheleznyj, Refrig. Eng. Technol. 152, 4–9 (2014)

    Google Scholar 

  25. J. Shelton, D. Balzarini, Can. J. Phys. 59, 334 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Mazur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Artemenko, S., Mazur, V., Vasilieva, O. (2015). Thermodynamic and Phase Behavior of Nanofluids. In: Bulavin, L., Lebovka, N. (eds) Physics of Liquid Matter: Modern Problems. Springer Proceedings in Physics, vol 171. Springer, Cham. https://doi.org/10.1007/978-3-319-20875-6_12

Download citation

Publish with us

Policies and ethics