Skip to main content

Arthrex® Univers Revers™ Shoulder Prosthesis

  • Chapter
  • First Online:
Reverse Shoulder Arthroplasty

Abstract

The objective of this chapter is to outline the current knowledge and understanding of reverse shoulder arthroplasty designs based on the peer reviewed literature and expert clinical experience and to demonstrate how these findings supported the engineering development of the Arthrex® Reverse Shoulder System, Univers Revers™. Currently, there are two predominant reverse shoulder design philosophies: the traditional Grammont design (Grammont et al. in Orthopedics 16:65–68, 1993; Sirveaux et al. in J Bone Joint Surg Br 86:388–395, 2004; Boileau et al. in J Shoulder Elbow Surg 14:147S–161S, 2005) with a valgus 155° neck-shaft angle and a medialized center of rotation, and the more recently adopted design, developed by Dr. Frankle with a varus 135° neck-shaft angle and a lateralized center of rotation (Cuff et al. J Bone Joint Surg Am 90:1244–1251, 2008). With the currently available reverse prostheses being Grammont’s medialized design or Frankle’s lateralized design, the surgeon is required to be committed to one design philosophy or the other. This commitment to one singular design may hinder surgeons from the ability to individualize each case and therefore optimize patient outcomes. The Arthrex Univers Revers™ combines both design philosophies into one system, empowering surgeons to treat a variety of shoulder pathologies without compromise, upholding the Arthrex philosophy of—“Helping surgeons treat their patients better.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grammont PM, Baulot E. Delta shoulder prosthesis for rotator cuff rupture. Orthopedics. 1993;16(1):65–8. doi:10.1007/s11999-011-1960-5.

    CAS  PubMed  Google Scholar 

  2. Sirveaux F, Favard L, Oudet D, Huquet D, Walch G, Molé D. Grammont inverted total shoulder arthroplasty in the treatment of glenohumeral osteoarthritis with massive rupture of the cuff. Results of a multicentre study of 80 shoulders. J Bone Joint Surg Br. 2004;86(3):388–95 (cited 2014 Mar 28). Available from http://www.bjj.boneandjoint.org.uk/content/86-B/3/388.long.

    Google Scholar 

  3. Boileau P, Watkinson DJ, Hatzidakis AM, Balg F. Grammont reverse prosthesis: design, rationale, and biomechanics. J Shoulder Elbow Surg. 2005;14(1 Suppl S):147S–161S (cited 2014 Mar 28). Available from http://www.jshoulderelbow.org/article/S1058-2746(04)00290-3/abstract.

    Google Scholar 

  4. Cuff D, Pupello D, Virani N, Levy J, Frankle M. Reverse shoulder arthroplasty for the treatment of rotator cuff deficiency. J Bone Joint Surg Am. 2008;90(6):1244–51. doi:10.2106/JBJS.G.00775.

    Article  PubMed  Google Scholar 

  5. Nam D, Kepler CK, Neviaser AS, Jones KJ, Wright TM, Craig EV, Warren RF. Reverse total shoulder arthroplasty: current concepts, results, and component wear analysis. J Bone Joint Surg Am. 2010;92(Suppl 2):23–35. doi:10.2106/JBJS.J.00769.

    Article  PubMed  Google Scholar 

  6. Nyffeler RW, Werner CM, Gerber C. Biomechanical relevance of glenoid component positioning in the reverse Delta III total shoulder prosthesis. J Shoulder Elbow Surg. 2005;14(5):524–8 (cited 2014 Mar 28). Available from http://www.jshoulderelbow.org/article/S1058-2746(04)00266-6/abstract.

    Google Scholar 

  7. Gutiérrez S, Walker M, Willis M, Pupello DR, Frankle MA. Effects of tilt and glenosphere eccentricity on baseplate/bone interface forces in a computational model, validated by a mechanical model, of reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2011;20(5):732–9. doi:10.1016/j.jse.2010.10.035.

    Article  PubMed  Google Scholar 

  8. Simovitch RW, Zumstein MA, Lohri E, Helmy N, Gerber C. Predictors of scapular notching in patients managed with the Delta III reverse total shoulder replacement. J Bone Joint Surg Am. 2007;89(3):588–600 (cited 2014 Mar 28). Available from http://www.jbjs.org/content/89/3/588.long.

    Google Scholar 

  9. Scalise JJ, Bryan J, Polster J, Brems JJ, Iannotti JP. Quantitative analysis of glenoid bone loss in osteoarthritis using three-dimensional computed tomography scans. J Shoulder Elbow Surg. 2008;17(2):328–35. doi:10.1016/j.jse.2007.07.013.

    Google Scholar 

  10. Codsi MJ, Bennetts C, Powell K, Iannotti JP. Locations for screw fixation beyond the glenoid vault for fixation of glenoid implants into the scapula: an anatomic study. J Shoulder Elbow Surg. 2007;16(3 Suppl):S84–9. doi:10.1016/j.jse.2006.07.009.

    Google Scholar 

  11. Gutiérrez S, Comiskey CA 4th, Luo ZP, Pupello DR, Frankle MA. Range of impingement-free abduction and adduction deficit after reverse shoulder arthroplasty. Hierarchy of surgical and implant-design-related factors. J Bone Joint Surg Am. 2008;90(12):2606–15. doi:10.2106/JBJS.H.00012.

    Article  PubMed  Google Scholar 

  12. Gutiérrez S, Greiwe RM, Frankle MA, Siegal S, Lee WE 3rd. Biomechanical comparison of component position and hardware failure in the reverse shoulder prosthesis. J Shoulder Elbow Surg. 2007 May–Jun;16(3 Suppl):S9–S12. doi:10.1016/j.jse.2005.11.008.

    Google Scholar 

  13. Gulotta LV, Choi D, Marinello P, Knutson Z, Lipman J, Wright T, Cordasco FA, Craig EV, Warren RF. Humeral component retroversion in reverse total shoulder arthroplasty: a biomechanical study. J Shoulder Elbow Surg. 2012;21(9):1121–7. doi:10.1016/j.jse.2011.07.027 Epub 2011 Oct 29.

    Article  PubMed  Google Scholar 

  14. Oh JH, Shin SJ, McGarry MH, Scott JH, Heckmann N, Lee TQ. Biomechanical effects of humeral neck-shaft angle and subscapularis integrity in reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2014;. doi:10.1016/j.jse.2013.11.003.

    Google Scholar 

  15. Gallo RA, Gamradt SC, Mattern CJ, Cordasco FA, Craig EV, Dines DM, Warren RF. Sports medicine and shoulder service at the hospital for special surgery. Instability after reverse total shoulder replacement. J Shoulder Elbow Surg. 2011;20(4):584–90. doi:10.1016/j.jse.2010.08.028.

    Article  PubMed  Google Scholar 

  16. Virani NA, Cabezas A, Gutiérrez S, Santoni BG, Otto R, Frankle M. Reverse shoulder arthroplasty components and surgical techniques that restore glenohumeral motion. J Shoulder Elbow Surg. 2013;22(2):179–87. doi:10.1016/j.jse.2012.02.004.

    Article  PubMed  Google Scholar 

  17. Chou J, Malak SF, Anderson IA, Astley T, Poon PC. Biomechanical evaluation of different designs of glenospheres in the SMR reverse total shoulder prosthesis: range of motion and risk of scapular notching. J Shoulder Elbow Surg. 2009; 18(3):354–9. doi:10.1016/j.jse.2009.01.015.

    Google Scholar 

  18. Teramoto A, Luo ZP, Levy JC, Pupello D. Glenoid morphology in reverse shoulder arthroplasty: classification and surgical implications. J Shoulder Elbow Surg. 2009; 18(6):874–85. doi:10.1016/j.jse.2009.02.013.

    Google Scholar 

  19. Walch G, Badet R, Boulahia A, Khoury A. Morphologic study of the glenoid in primary glenohumeral osteoarthritis. J Arthroplasty. 1999;14(6):756–60 (cited 2014 Mar 28). Available from http://www.arthroplastyjournal.org/article/S0883-5403(99)90232-2/abstract.

    Google Scholar 

  20. Habermeyer P, Magosch P, Luz V, Lichtenberg S. Three-dimensional glenoid deformity in patients with osteoarthritis: a radiographic analysis. J Bone Joint Surg Am. 2006;88(6):1301–7 (cited 2014 Mar 28). Available from http://www.jbjs.org/content/88/6/1301.long.

    Google Scholar 

  21. Hoenecke HR Jr, Hermida JC, Dembitsky N, Patil S, D’Lima DD. Optimizing glenoid component position using three-dimensional computed tomography reconstruction. J Shoulder Elbow Surg. 2008;17(4):637–41. doi:10.1016/j.jse.2007.11.021.

    Google Scholar 

  22. Humphrey CS, Kelly JD 2nd, Norris TR. Optimizing glenosphere position and fixation in reverse shoulder arthroplasty, part two: the three-column concept. J Shoulder Elbow Surg. 2008;17(4):595–601. doi:10.1016/j.jse.2008.05.038.

    Google Scholar 

  23. von Schroeder HP, Kuiper SD, Botte MJ. Osseous anatomy of the scapula. Clin Orthop Relat Res. 2001;383:131–9.

    Article  Google Scholar 

  24. Gutiérrez S, Levy JC, Frankle MA, Cuff D, Keller TS, Pupello DR, Lee WE 3rd. Evaluation of abduction range of motion and avoidance of inferior scapular impingement in a reverse shoulder model. J Shoulder Elbow Surg. 2008;17(4):608–15. doi:10.1016/j.jse.2007.11.010.

    Google Scholar 

  25. Chebli C, Huber P, Watling J, Bertelsen A, Bicknell RT, Matsen F 3rd. Factors affecting fixation of the glenoid component of a reverse total shoulder prothesis. J Shoulder Elbow Surg. 2008;17(2):323–7. doi:10.1016/j.jse.2007.07.015.

    Google Scholar 

  26. DiStefano JG, Park AY, Nguyen TQ, Diederichs G, Buckley JM, Montgomery WH 3rd. Optimal screw placement for base plate fixation in reverse total shoulder arthroplasty. J Shoulder Elbow Surg. 2011;20(3):467–76. doi:10.1016/j.jse.2010.06.001.

    Article  PubMed  Google Scholar 

  27. Parsons BO, Gruson KI, Accousti KJ, Klug RA, Flatow EL. Optimal rotation and screw positioning for initial glenosphere baseplate fixation in reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2009;18(6):886–91. doi:10.1016/j.jse.2008.11.002.

    Google Scholar 

  28. Lee TQ, Barnett SL, Kim WC. Effects of screw types in cementless fixation of tibial tray implants: stability and strength assessment. Clin Biomech (Bristol, Avon). 1999;14(4):258–64 (cited 2014 Mar 28). Available from http://www.clinbiomech.com/article/S0268-0033(98)90088-2/abstract.

    Google Scholar 

  29. Whiteside LA. Four screws for fixation of the tibial component in cementless total knee arthroplasty. Clin Orthop Relat Res. 1994;299:72–6.

    PubMed  Google Scholar 

  30. Cameron HU, Pilliar RM, MacNab I. The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res. 1973;7(4):301–11. doi:10.1002/jbm.820070404.

    Article  CAS  PubMed  Google Scholar 

  31. James J, Allison MA, Werner FW, McBride DE, Basu NN, Sutton LG, Nanavati VN. Reverse shoulder arthroplasty glenoid fixation: is there a benefit in using four instead of two screws? J Shoulder Elbow Surg. 2013;22(8):1030–6. doi:10.1016/j.jse.2012.11.006.

    Article  PubMed  Google Scholar 

  32. Sutton LG, Werner FW, Jones AK, Close CA, Nanavati VN. Optimization of glenoid fixation in reverse shoulder arthroplasty using 3-dimensional modeling. J Shoulder Elbow Surg. 2010;19(5):664–9. doi:10.1016/j.jse.2009.12.003.

    Article  PubMed  Google Scholar 

  33. ASTM F2028-08(2012)e1. Standard test methods for dynamic evaluation of glenoid loosening or disassociation.

    Google Scholar 

  34. ASTM F1829-98. Standard test method for static evaluation of theglenoid locking mechanism. West Conshohocken, PA; 2001.

    Google Scholar 

  35. Harman M, Frankle M, Vasey M, Banks S. Initial glenoid component fixation in “reverse” total shoulder arthroplasty: a biomechanical evaluation. J Shoulder Elbow Surg. 2005;14(1 Suppl S):162S–167S (cited 2014 Mar 28). Available from http://www.jshoulderelbow.org/article/S1058-2746(04)00291-5/abstract.

    Google Scholar 

  36. Anglin C, Wyss UP, Pichora DR. Mechanical testing of shoulder prostheses and recommendations for glenoid design. J Shoulder Elbow Surg. 2000;9(4):323–31 (cited 2014 Mar 28). Available from http://www.jshoulderelbow.org/article/S1058-2746(00)15673-3/abstract.

    Google Scholar 

  37. Cheung E, Willis M, Walker M, Clark R, Frankle MA. Complications in reverse total shoulder arthroplasty. J Am Acad Orthop Surg. 2011;19(7):439–49 (cited 2014 Mar 28). Available from http://www.jaaos.org/content/19/7/439.long.

    Google Scholar 

  38. Frankle M, Siegal S, Pupello D, Saleem A, Mighell M, Vasey M. The reverse shoulder prosthesis for glenohumeral arthritis associated with severe rotator cuff deficiency. A minimum two-year follow-up study of sixty patients. J Bone Joint Surg Am. 2005;87(8):1697–705 (cited 2014 Mar 28). Available from http://www.jbjs.org/content/87/8/1697.long.

    Google Scholar 

  39. Pilliar RM, Lee JM, Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res. 1986;208:108–13.

    PubMed  Google Scholar 

  40. Goyenvalle E, Aguado E, Nguyen JM, Passuti N, Le Guehennec L, Layrolle P, Daculsi G. Osteointegration of femoral stem prostheses with a bilayered calcium phosphate coating. Biomaterials. 2006;27(7):1119–28. doi:10.1016/j.biomaterials.2005.07.039.

    Article  CAS  PubMed  Google Scholar 

  41. Barrere F, Snel MM, van Blitterswijk CA, de Groot K, Layrolle P. Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials. 2004;25(14):2901–10. doi:10.1016/j.biomaterials.2003.09.063.

    Article  CAS  PubMed  Google Scholar 

  42. Kim MS, Jung UW, Kim S, Lee JS, Lee IS, Choi SH. Bone apposition on implants coated with calcium phosphate by ion beam assisted deposition in oversized drilled sockets: a histologic and histometric analysis in dogs. J Periodontal Implant Sci. 2013;43(1):18–23. doi:10.5051/jpis.2013.43.1.18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Seeherman HJ, Li XJ, Smith E, Parkington J, Li R, Wozney JM. Intraosseous injection of rhBMP-2/calcium phosphate matrix improves bone structure and strength in the proximal aspect of the femur in chronic ovariectomized nonhuman primates. J Bone Joint Surg Am. 2013;95(1):36–47. doi:10.2106/JBJS.K.00668.

    Article  PubMed  Google Scholar 

  44. Pilliar RM, Cameron HU, Welsh RP, Binnington AG. Radiographic and morphologic studies of load-bearing porous-surfaced structured implants. Clin Orthop Relat Res. 1981;156:249–57.

    PubMed  Google Scholar 

  45. Roche C, Flurin PH, Wright T, Crosby LA, Mauldin M, Zuckerman JD. An evaluation of the relationships between reverse shoulder design parameters and range of motion, impingement, and stability. J Shoulder Elbow Surg. 2009;18(5):734–41. doi:10.1016/j.jse.2008.12.008.

    Google Scholar 

  46. Boileau P, Walch G. The three-dimensional geometry of the proximal humerus. Implications for surgical technique and prosthetic design. J Bone Joint Surg Br. 1997;79(5):857–65 (cited 2014 Mar 28). Available from http://www.bjj.boneandjoint.org.uk/content/79-B/5/857.long.

    Google Scholar 

  47. Hertel R, Knothe U, Ballmer FT. Geometry of the proximal humerus and implications for prosthetic design. J Shoulder Elbow Surg. 2002;11(4):331–8 (cited 2014 Mar 28). Available from http://www.jshoulderelbow.org/article/S1058-2746(02)00021-6/abstract.

    Google Scholar 

  48. Irlenbusch U, Blatter G, Pap G, Zenz P. Variabilität des medialen und dorsalen Offset des proximalen Humerus bei Patienten mit Schulterendoprothesen. Hamburg: DVSE; 2009.

    Google Scholar 

  49. Roche C, Flurin PH, Wright T, Crosby L, Sahajpal D, Mauldin M, Zuckerman J. The use of constrained liners in reverse shoulder. Poster session presented at: 56th annual meeting of the Orthopaedic Research Society, 6–9 Mar 2010, New Orleans, LA.

    Google Scholar 

  50. Gutiérrez S, Luo ZP, Levy J, Frankle MA. Arc of motion and socket depth in reverse shoulder implants. Clin Biomech (Bristol, Avon). 2009;24(6):473–9. doi:10.1016/j.clinbiomech.2009.02.008.

    Google Scholar 

  51. Hasan SS, Leith JM, Campbell B, Kapil R, Smith KL, Matsen FA 3rd. Characteristics of unsatisfactory shoulder arthroplasties. J Shoulder Elbow Surg. 2002;11(5):431–41. doi:10.1067/mse.2002.125806.

    Google Scholar 

  52. Visotsky JL, Basamania C, Seebauer L, Rockwood CA, Jensen KL. Cuff tear arthropathy: pathogenesis, classification, and algorithm for treatment. J Bone Joint Surg Am. 2004;86-A Suppl 2:35–40 (cited 2014 Mar 28). Available from http://www.jbjs.org/content/86/suppl_2/35.long.

  53. Lévigne C, Boileau P, Favard L, Garaud P, Molé D, Sirveaux F, Walch G. Scapular notching in reverse shoulder arthroplasty. J Shoulder Elbow Surg. 2008;17(6):925–35. doi:10.1016/j.jse.2008.02.010.

    Google Scholar 

  54. Roberts CC, Ekelund AL, Renfree KJ, Liu PT, Chew FS. Radiologic assessment of reverse shoulder arthroplasty. Radiographics. 2007;27(1):223–35. http://dx.doi.org/10.1148/rg.271065076.

    Google Scholar 

  55. Boileau P, Moineau G, Roussanne Y, O’Shea K. Bony increased-offset reversed shoulder arthroplasty: minimizing scapular impingement while maximizing glenoid fixation. Clin Orthop Relat Res. 2011;469(9):2558–67. doi:10.1007/s11999-011-1775-4.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Nicholson GP, Strauss EJ, Sherman SL. Scapular notching: recognition and strategies to minimize clinical impact. Clin Orthop Relat Res. 2011;469(9):2521–30. doi:10.1007/s11999-010-1720-y.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We hereby acknowledge the following people and organizations for their contributions to this chapter:

We would like to thank Prof. Dr. med. Peter Habermeyer, ATOS, Germany, for his contributions to the development of this prosthesis system, and everyone at Arthrex GmbH and Arthrex Inc who contributed to the development, manufacture, packaging, quality assurance, testing, training, marketing, and distribution of the Arthrex Univers ReversTM system.

Special gratitude is due to Jingle Thomas for diligently copy editing and revising this chapter, and Jean Comstock, Hannah Ahn and Alvaro Villagomez for creating the graphical illustrations.

Finally, we wish to thank Reinhold Schmieding, founder and president of Arthrex Inc, for his support and vision in recognizing the potential for the Arthrex Univers ReversTM system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Metcalfe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Metcalfe, N., Mellano, C., Romeo, A.A. (2016). Arthrex® Univers Revers™ Shoulder Prosthesis. In: Frankle, M., Marberry, S., Pupello, D. (eds) Reverse Shoulder Arthroplasty. Springer, Cham. https://doi.org/10.1007/978-3-319-20840-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20840-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20839-8

  • Online ISBN: 978-3-319-20840-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics