Skip to main content

Modelling and Bioclimatic Interventions in Outdoor Spaces

  • Chapter
  • First Online:
Energy Performance of Buildings
  • 2430 Accesses

Abstract

These days, urban design of open spaces is strongly related to bioclimatic techniques and practices. In this chapter we present the procedure of such bioclimatic studies by the use of simulation tools. Outdoor spaces that are characterized by decreased human thermal comfort conditions during the summer, especially in areas under temperate climatic conditions, justify a bioclimatic intervention. Modelling has contributed to the understanding of both the limitations and benefits of specific interventions that should be made in the open space in order to succeed at the predefined thermal related improvement. Also, it shows how these interventions affect buildings’ operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ABOLIN, Technical material brochures & Certificates

    Google Scholar 

  • Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy 70(3):295–310

    Article  Google Scholar 

  • ANSYS-CFD-SOFTWARE http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics

  • Baik J, Kim Y, Chun H (2001) Dry and moist convection forced by an urban heat island. J Appl Meteorol 40:1462–1475

    Article  Google Scholar 

  • Center for Renewable Energy Sources and Saving. www.cres.gr

  • Fintikakis N, Gaitani N, Santamouris M, Assimakopoulos M, Assimakopoulos DN, Fintikaki M, Albanis G, Papadimitriou K, Chryssochoides E, Katopodi K, Doumas P (2011) Bioclimatic design of open public spaces in the historic centre of Tirana, Albania. Sustain Cities Soc 1:54–62

    Google Scholar 

  • Gaitani N, Mihalakakou G, Santamouris M (2007) On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Build Environ 42(1):317–324

    Article  Google Scholar 

  • Gaitani Îť, Spanou Α, Saliaria M, Synnefa A, Vassilakopoulou K, Papadopoulou K, Pavloua K, Santamouris M, Papaioannou M, Lagoudaki A (2011) Improving the microclimate in urban areas: a case study in the centre of Athens. Build Serv Eng Res Technol 32(1):53–71

    Google Scholar 

  • Gaitani N, Santamouris M, Cartalis C, Pappas I, Xyrafi F, Mastrapostoli E, Karahaliou P, Efthymiou C (2014) Microclimatic analysis as a prerequisite for sustainable urbanisation: application for an urban regeneration project for a medium size city in the greater urban agglomeration of Athens, Greece. Sustain Cities Soc 13:230–236

    Article  Google Scholar 

  • Gartland L (2008) Heat islands: understanding and mitigating heat in urban areas. Earthscan, Sterling, Virginia

    Google Scholar 

  • Georgi JN, Dimitriou D (2010) The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Build Environ 45(6):1401–1414

    Article  Google Scholar 

  • Gilbert OL (1991) The ecology of urban habitats. Chapman & Hall, London

    Book  Google Scholar 

  • GTCI Greek Technical Chartered Institution 20701-1 (2010). Analytical national standards of parameters of estimating building energy performance energy class certificate production

    Google Scholar 

  • Gulyas A, Unger J, Matzarakis A (2006) Assessment of the microclimatic and human comfort conditions in a complex urban environment: modelling and measurements. Build Environ 41:1713–1722

    Article  Google Scholar 

  • Incropera De Witt (1990) Fundamentals of heat and mass transfer. Willey, London

    Google Scholar 

  • Kolokotsa DD, Santamouris M, Akbari H (2013) Advances in the development of cool materials for the built environment, 385 p

    Google Scholar 

  • Livada I, Santamouris M, Niachou K, Papanikolaou N, Mihalakakou G (2002) Determination of places in the great Athens area where the heat island effect is observed. Theoret Appl Climatol 71:219–230

    Article  Google Scholar 

  • Mastrapostoli E, Karlessi T, Pantazaras A, Kolokotsa D, Gobakis K, Santamouris M (2014) On the cooling potential of cool roofs in cold climates: use of cool fluorocarbon coatings to enhance the optical properties and the energy performance of industrial buildings. Energy Build 69:417–425

    Article  Google Scholar 

  • Matzarakis et al (2006) Modelling the thermal bioclimate in urban areas with the RayMan Model. PLEA II:449–453

    Google Scholar 

  • Oke TP (1973) City size and the urban heat island. Atmos Environ Oxf 14:769–779

    Article  Google Scholar 

  • PHOENICS software tool: http://www.cham.co.uk/

  • Pisello AL, Santamouris M, Cotana F (2013) Active cool roof effect: impact of cool roofs on cooling system efficiency. Adv Build Energy Res 7(2):209–221

    Article  Google Scholar 

  • Santamouris M (ed) (2006) Environmental design of urban buildings. Earthscan, London

    Google Scholar 

  • Santamouris M (2013) Using cool pavements as a mitigation strategy to fight urban heat island—a review of the actual developments. Renew Sustain Energy Rev 26:224–240

    Article  Google Scholar 

  • Santamouris M (2014a) Cooling the cities—a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol Energy 103:682–703

    Article  Google Scholar 

  • Santamouris M (2014b) On the energy impact of urban heat island and global warming on buildings. Energy Build 82:100–113

    Article  Google Scholar 

  • Santamouris M, Synnefa A, Karlessi T (2011) Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol Energy 85(12):3085–3102

    Article  Google Scholar 

  • Santamouris M, Gaitani N, Spanou A, Saliari M, Giannopoulou K, Vasilakopoulou K, Kardomateas T (2012a) Using cool paving materials to improve microclimate of urban areas Design realization and results of the flisvos project. Build Environ 53:128–136

    Article  Google Scholar 

  • Santamouris M, Xirafi F, Gaitani N, Spanou A, Saliari M, Vassilakopoulou K (2012b) Improving the microclimate in a dense urban area using experimental and theoretical techniques—the case of Marousi, Athens. Int J Vent 11(1):1–16

    Google Scholar 

  • Skoulika F, Santamouris M, Kolokotsa D, Boemi N (2014) On the thermal characteristics and the mitigation potential of a medium size urban park in Athens, Greece. Landscape Urban Plann 123:73–86

    Article  Google Scholar 

  • Stavrakakis GM, Tzanaki E, Genetzaki VI, Anagnostakis G, Galetakis G, Grigorakis E (2011) A computational methodology for effective bioclimatic-design applications in the urban environment. Sustain Cities Soc 1:54–62

    Article  Google Scholar 

  • Stone B Jr (2005) Urban heat and air pollution: an emerging role for planners in the climate change debate. J Am Plann Assoc 71(1):13–25

    Article  Google Scholar 

  • Tang L, Nikolopoulou M, Zhang N (2014) Bioclimatic design of historic villages in central-western regions of China. Energy Build 70:271–278

    Article  Google Scholar 

  • TAS-EDSL http://www.edsl.net

  • Tsilini V, Papantoniou S, Kolokotsa DD, Maria EA (2014) Urban gardens as a solution to energy poverty and urban heat island. Sustain Cities Soc 14:323–333

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stamatis Zoras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zoras, S., Dimoudi, A. (2016). Modelling and Bioclimatic Interventions in Outdoor Spaces. In: Boemi, SN., Irulegi, O., Santamouris, M. (eds) Energy Performance of Buildings. Springer, Cham. https://doi.org/10.1007/978-3-319-20831-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20831-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20830-5

  • Online ISBN: 978-3-319-20831-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics