Skip to main content

Solar Thermal Systems

  • Chapter
  • First Online:

Abstract

This chapter presents an overview of solar thermal systems used to supply energy for domestic hot water provision as well as space heating and cooling of buildings. Solar energy collectors are the main component of solar thermal systems; they play a vital role in converting solar radiation to heat. Water and air heating collectors are the most widely used in either glazed or unglazed configurations, with solar water heating systems the most popular means of utilizing solar energy. Solar water heating systems consist of forced circulation and thermosyphon systems, and solar thermal cooling systems use heat from the sun to drive absorption and adsorption chillers, desiccant and ejector systems to provide cooling in buildings. Solar air heating systems heat ventilation air for buildings and can also provide domestic hot water when connected to a suitable heat exchanger. Solar collectors can be integrated into elements of building envelopes, such as roofs, façades, balconies, and walls.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Zubaydi AYT (2011) Solar air conditioning and refrigeration with absorption chillers technology in Australia—an overview on researches and applications. J Adv Sci Eng Res 1:23–41

    Google Scholar 

  • Baniyounes AM, Liu G, Rasul MG et al (2013) Comparison study of solar cooling technologies for an institutional building in subtropical Queensland, Australia. Renew Sustain Energy Rev 23:421–430

    Article  Google Scholar 

  • Budihardjo I, Morrison GL, Behnia M (2007) Natural circulation flow through water-in-glass evacuated tube solar collectors. Sol Energy 81(12):1460–1472

    Article  Google Scholar 

  • CEREN (Centre d’Etudes et de Recherches Economiques sur l’Energie) (2011) Consommation totale d’énergie des secteurs résidentiel et tertiaire, par usage, de 1990 à 2009, http://www.statistiques.developpementdurable.gouv.fr June 2011

  • Coast DoEG (2012) CHP thermal technologies. Available via DIALOG. http://gulfcoastcleanenergy.org/CLEANENERGY/CombinedHeatandPower/Thermaltechnologies/tabid/1789/Default.aspx. Cited 10 Mar 2015

  • Duffie JA, Beckman WA (1991) Solar engineering of thermal processes. Wiley, New York

    Google Scholar 

  • European Solar Thermal Industry Federation (ESTIF) (2010) Solar thermal markets in Europe: trends and market statistics 2009. Available via DIALOG http://www.estif.org/fileadmin/estif/content/market_data/downloads/2009%20solar_thermal_markets.pdf. Cited 10 Mar 2015

  • European Solar Thermal Industry Federation (ESTIF) (2012). Solar thermal markets in Europe. Trends and Market Statistics 2011, Brussels, June

    Google Scholar 

  • Faghri A (1995) Heat pipe science. Taylor & Francis, London

    Google Scholar 

  • Ghafoor A, Munir A (2015) Worldwide overview of solar thermal cooling technologies. Renew Sustain Energy Rev 43:763–774

    Article  Google Scholar 

  • Gawlik K, Christensen C, Kutscher C (2005) A numerical and experimental investigation of low-conductivity unglazed, transpired solar air heaters. J Sol Energy Eng Trans ASME 127:153–155

    Article  Google Scholar 

  • Hastings SR, Morck O (2000) Solar air system: a design handbook. UK: James and James Science

    Google Scholar 

  • IEA (2012) Technology roadmap: solar heating and cooling. International Energy Agency, Draft report

    Google Scholar 

  • IEA (2009) Solar air-conditioning and refrigeration. International Energy Agency, Technical report Task-38

    Google Scholar 

  • Jakob U, Spiegel K, Pink W (2008) Development and experimental investigation of a novel 10 kW ammonia/water absorption chiller–chillii® PSC for air-conditioning and refrigeration systems. In: Proceedings of the 9th internal IEA heat pump conference, Zurich, Switzerland, 20–22 May

    Google Scholar 

  • Jakob U, Pink W (2007) Development of an ammonia/water absorption chiller–chilli PSC–for a solar cooling system. In: Proceedings of the international conference solar air conditioning, OTTI, Tarragona, Spain, 18–19 Oct, pp 440–445

    Google Scholar 

  • Jakob U, Mittelbach W (2008) Development and investigation of a compact silica-gel/water adsorption chiller integrated in solar cooling systems. VII Minsk international seminar “Heat pipes, heat pumps, refrigerators, power sources”, Minsk, Belarus, 8–11 Sept

    Google Scholar 

  • Kalkan N, Young EA, Celiktas A (2012) Solar thermal air conditioning technology reducing the footprint of solar thermal air conditioning. Renew Sustain Energy Rev 16:6352–6383

    Article  Google Scholar 

  • Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30:231–295

    Article  Google Scholar 

  • Kalogirou S (2003) The potential of solar industrial process heat applications. Appl Energy 76(4):337–361

    Article  Google Scholar 

  • Karim MA, Hawlader MNA (2006) Performance investigation of flat plate, v-corrugated and finned air collectors. Energy 31:452–470

    Article  Google Scholar 

  • Karsli S (2007) Performance analysis of new-design solar air collectors for drying applications. Renew Energy 32:1645–1660

    Article  Google Scholar 

  • Luminosu I, Fara L (2005) Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation. Energy 30(5):731–747

    Article  Google Scholar 

  • Mauthner F, Weiss W (2014) Solar heat worldwide: markets and contribution to the energy supply 2012. IEA solar heating and cooling programme, June

    Google Scholar 

  • Moschella A, Salemi A, Lo Faro A, Sanfilippo G et al (2013) Historic buildings in mediterranean area and solar thermal technologies: Architectural Integration vs Preservation Criteria. Energy Procedia, vol 42 pp 416–425

    Google Scholar 

  • Moummi N, Youcef-Ali S, Moummi A et al (2004) Energy analysis of a solar air collector with rows of fins. Renew Energy 29:2053–2064

    Article  Google Scholar 

  • Munari Probst MC, Roecker C, Schueler A (2004) Impact of new developments on the integration into facades of solar thermal collectors. In: Proceedings EUROSUN, Freiburg im Breisgau, Germany

    Google Scholar 

  • Munari Probst MC, Roecker C (2007) Towards an improved architectural quality of building integrated solar thermal systems (BIST). Solar Energy 81(9):1104–1116

    Google Scholar 

  • OECD/IEA (2008) Energy technology perspectives: Scenarios and strategies to 2050, Paris

    Google Scholar 

  • REN21 (2014) Renewables 2014 global status report. Available via DIALOG http://www.ren21.net/portals/0/documents/resources/gsr/2014/gsr2014_full%20report_low%20res.pdf. Cited 10 Mar 2015

  • Shams NSM (2013) Design of a transpired air heating solar collector with an inverted perforated absorber and asymmetric compound parabolic concentrator. Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the Dublin Institute of Technology, March 2013

    Google Scholar 

  • Shukla A, Nkwetta DN, Cho YJ et al (2012) A state of art review on the performance of transpired solar collector. Renew Sustain Energy Rev 16:3975–3985

    Article  Google Scholar 

  • SOLAIR (2009) Market report for small and medium-sized solar air-conditioning appliances. Analysis of market potential. Available via DIALOG. http://www.solair-project.eu. Cited 10 Mar 2015

  • Tamasauskas J, Kegel M, Sunye R (2014) An analysis of solar thermal technologies integrated into a canadian office building. Energy Procedia 48:1017–1026

    Article  Google Scholar 

  • The German Solar Energy Society (2007) Planning and installing solar thermal systems: a guide for installers, architects and engineers. James and James, UK

    Google Scholar 

  • Tripanagnostopoulos Y, Souliotis M, Nousia T (2000) Solar collectors with colored absorbers. Sol Energy 68:343–356

    Article  Google Scholar 

  • Tsoutsos T, Aloumpi E, Gkouskos Z et al (2010) Design of a solar absorption cooling system in a Greek hospital. Energy Build 42:265–272

    Article  Google Scholar 

  • Van Decker GWE, Hollands KGT, Brunger AP (2001) Heat-exchange relations for unglazed transpired solar collectors with circular holes on a square or triangular pitch. Sol Energy 71:33–45

    Article  Google Scholar 

  • Wang RZ, Zhai XQ (2010) Development of solar thermal technologies in China. Energy 35(11):4407–4416

    Google Scholar 

  • Xiaowu W, Ben H (2005) Exergy analysis of domestic-scale solar water heaters. Renew Sustain Energy Rev 9:638–645

    Article  Google Scholar 

  • Yang L, He B, Ye M (2014) The application of solar technologies in building energy efficiency: BISE design in solar-powered residential buildings. Technol Soc 38:111–118

    Article  Google Scholar 

  • Yousef BAA, Adam NM (2008) Performance analysis for flat plate collector with and without porous media. J Energy Southern Africa 19:32–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Ayompe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ayompe, L.M. (2016). Solar Thermal Systems . In: Boemi, SN., Irulegi, O., Santamouris, M. (eds) Energy Performance of Buildings. Springer, Cham. https://doi.org/10.1007/978-3-319-20831-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20831-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20830-5

  • Online ISBN: 978-3-319-20831-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics