Skip to main content

The State of the Art for Technologies Used to Decrease Demand in Buildings: Thermal Energy Storage

  • Chapter
  • First Online:

Abstract

The high energy consumption in the building sector, especially for heating and cooling, has promoted new and more restrictive energy policies around the world, such as the new European Directive 2010/31/EU on the energy consumption of buildings. Apart from enforcing stringent building codes that include minimum energy consumption for new and refurbished buildings, the IEA ETP 2012 highlights the necessity of using highly efficient technologies in the envelopes, equipment, and new strategies to address the high energy consumption of the sector. In this context, the use of appropriate thermal energy storage (TES) systems has a high potential to reduce the energy demand for both heating and cooling. The use of TES in the building sector not only leads to the rational use of thermal energy, which reduces the energy demand, but allows peak load shifting strategies, as well as manages the gap between possible renewable energy production and heating/cooling demands. In this chapter, various available technologies are analyzed where sensible, latent, or thermochemical storages are implemented in either active, passive, or hybrid building systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abhat A (1983) Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy 30:313–332

    Article  Google Scholar 

  • Adams S, Becker M, Krauss D, Gilman C (2010) Not a dry subject: optimizing water Trombe wall. In: ASE S (ed) SOLAR 2010 conference

    Google Scholar 

  • Agyenim F, Hewitt N (2010) The development of a finned phase change material (PCM) storage system to take advantage of off-peak electricity tariff for improvement in cost of heat pump operation. Energy Build 42(9):1552–1560. doi:10.1016/j.enbuild.2010.03.027

    Article  Google Scholar 

  • Ahmad M, Bontemps A, Sallée H, Quenard D (2006) Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material. Energy Build 38:673–681

    Article  Google Scholar 

  • Alawadhi EM, Alqallaf HJ (2011) Building roof with conical holes containing PCM to reduce the cooling load: numerical study. Energy Convers Manag 52(8–9):2958–2964

    Article  Google Scholar 

  • Aranda-Usón A, Ferreira G, López-Sabirón AM, Mainar-Toledo MD, Zabalza Bribián I (2013) Phase change material applications in buildings: an environmental assessment for some Spanish climate severities. Sci Total Environ 444:16–25. doi:10.1016/j.scitotenv.2012.11.012

    Article  Google Scholar 

  • Arkar C, Medved S (2007) Free cooling of a building using PCM heat storage integrated into the ventilation system. Sol Energy 81(9):1078–1087. doi:10.1016/j.solener.2007.01.010

    Article  Google Scholar 

  • Arkar C, Vidrih B, Medved S (2007) Efficiency of free cooling using latent heat storage integrated into the ventilation system of a low energy building. Int J Refrig 30(1):134–143. doi:10.1016/j.ijrefrig.2006.03.009

    Article  Google Scholar 

  • Arteconi A, Hewitt NJ, Polonara F (2013) Domestic demand-side management (DSM): role of heat pumps and thermal energy storage (TES) systems. Appl Therm Eng 51(1–2):155–165. doi:10.1016/j.applthermaleng.2012.09.023

    Article  Google Scholar 

  • Baetens R, Jelle BP, Gustavsen A (2010) Phase change materials for building applications: a state-of-the-art review. Energy Build 42:1361–1368

    Article  Google Scholar 

  • Barreneche C, De Gracia A, Serrano S, Navarro ME, Borreguero AM, Fernández AI, Cabeza LF (2013) Comparison of three different devices available in Spain to test thermal properties of building materials including phase change materials. Appl Energy 109:544–552. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84879270070&partnerID=40&md5=b9a5b9836401f86c9f005c65f1cb7569

  • Barreneche C, Fernández AI, Niubó M, Chimenos JM, Espiell F, Segarra M, Cabeza LF (2013) Development and characterization of new shape-stabilized phase change material (PCM)—polymer including electrical arc furnace dust (EAFD), for acoustic and thermal comfort in buildings. Energy Build 61:210–214. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84875178352&partnerID=40&md5=86e72298677da691830b12cdcfb601f5

  • Barreneche C, Navarro ME, Niubó M, Cabeza LF, Fernández AI (2014) Use of PCM-polymer composite dense sheet including EAFD in constructive systems. Energy Build 68(PARTA):1–6. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84886433203&partnerID=40&md5=fb540fb7b5cc6dd73a2a6cb22a664d64

  • Basecq V, Michaux G, Inard C, Blondeau P (2013) Short-term storage systems of thermal energy for buildings: a review. Adv Build Energy Res 7(1):66–119

    Article  Google Scholar 

  • Benli H, Durmuş A (2009) Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy Build 41(2):220–228. doi:10.1016/j.enbuild.2008.09.004

    Article  Google Scholar 

  • Biswas K, Lu J, Soroushian P, Shrestha S (2014) Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard. Appl Energy 131:517–529

    Article  Google Scholar 

  • Bontemps A, Ahmad M, Johannès K, Sallée H (2011) Experimental and modelling study of twin cells with latent heat storage walls. Energy Build 43(9):2456–2461

    Article  Google Scholar 

  • Borreguero A, Carmona M, Sanchez M, Valverde J, Rodriguez J (2010) Improvement of the thermal behavior of gypsum blocks by the incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio. Appl Therm Eng 30:1164–1169

    Article  Google Scholar 

  • Briga-Sá A, Martins A, Boaventura-Cunha J, Lanzinha J, Paiva A (2014) Energy performance of Trombe Walls. Adaptation of ISO 13790:2008(E) to the Portuguese reality. Energy Build 74:111–119

    Article  Google Scholar 

  • Cabeza L (2015) Advances in thermal energy storage systems. In: Cabeza J (ed) Methods and applications. Woodhead Publishing, Cambridge

    Google Scholar 

  • Cabeza LF, Castellón C, Nogués M, Medrano M, Leppers R, Zubillaga O (2007) Use of microencapsulated PCM in concrete walls for energy savings. Energy Build 39(2):113–119. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-33845749671&partnerID=40&md5=9ea560a5ff7136bf555816b3b0c5c873

  • Cabeza LF, Castell A, Barreneche C, De Gracia A, Fernández AI (2011) Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev 15(3):1675–1695

    Google Scholar 

  • Cabeza LF, Rincón L, Vilariño V, Pérez G, Castell A (2014) Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: a review. Renew Sustain Energy Rev 29:394–416. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84884633626&partnerID=40&md5=39e37dbc12cc2071136d75807458b360

  • Castell A, Martorell I, Medrano M, Pérez G, Cabeza LF (2010) Experimental study of using PCM in brick constructive solutions for passive cooling. Energy Build 42(4):534–540. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-77649183812&partnerID=40&md5=892b975b0f63d8318c264e2d1eeabf63

  • Castell A, Menoufi K, de Gracia A, Rincón L, Boer D, Cabeza LF (2013) Life cycle assessment of alveolar brick construction system incorporating phase change materials (PCMs). Appl Energy 101:600–608. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84869869833&partnerID=40&md5=4fa882f68ee30f00e51a1520030acdb1

  • Castellón C, Medrano M, Roca J, Cabeza LF, Navarro ME, Fernández AI, Zalba B (2010) Effect of microencapsulatedphase change material in sandwich panels. Renew Energy 35(10):2370–2374

    Google Scholar 

  • Cool Phase (2014) Natural cooling and low energy ventilation system. Available from http://www.cool-phase.net/

  • Cot-Gores J, Castell A, Cabeza LF (2012) Thermochemical energy storage and conversion: a-state-of-the-art review of the experimental research under practical conditions. Renew Sustain Energy Rev 16(7):5207–5224. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84862739473&partnerID=40&md5=8b344aa8d631967b13fac135a9660879

  • De Gracia A, Rincón L, Castell A, Jiménez M, Boer D, Medrano M, Cabeza LF (2010) Life cycle assessment of the inclusion of phase change materials (PCM) in experimental buildings. Energy Build 42(9):1517–1523. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-78651454787&partnerID=40&md5=bd9ae4dc9db35879be7f15c2086a992f

  • De Gracia A, Barreneche C, Farid MM, Cabeza LF (2011) New equipment for testing steady and transient thermal performance of multilayered building envelopes with PCM. Energy Build 43(12):3704–3709

    Article  Google Scholar 

  • De Gracia A, Navarro L, Castell A, Ruiz-Pardo A, Alvárez S, Cabeza LF (2012) Experimental study of a ventilated facade with PCM during winter period. Energy Build. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84869487163&partnerID=40&md5=74059d06d245d5c1a6b78902d38c784c

  • De Gracia A, Navarro L, Castell A, Cabeza LF (2015) Energy performance of a ventilated double skin facade with PCM under different climates. Energy Build 91:37–42

    Article  Google Scholar 

  • Del Barrio EP, Dauvergne JL, Morisson V (2009) A simple experimental method for thermal characterization of shape-stabilized phase change materials. Sol Energy Eng. Trans ASME 131(4):0410101–0410108

    Google Scholar 

  • Delgado M, Lázaro A, Mazo J, Zalba B (2012) Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications. Renew Sustain Energy Rev 16:253–273

    Article  Google Scholar 

  • Desai D, Miller M, Lynch JP, Li VC (2014) Development of thermally adaptive engineered cementitious composite for passive heat storage. Constr Build Mater 67:366–372

    Google Scholar 

  • Diaconu BM (2011) Thermal energy savings in buildings with PCM-enhanced envelope: influence of occupancy pattern and ventilation. Energy Build 43(1):101–107

    Article  MathSciNet  Google Scholar 

  • Diaconu BM, Cruceru M (2010) Novel concept of composite phase change material wall system for year-round thermal energy savings. Energy Build 42(10):1759–1772

    Article  Google Scholar 

  • Directive 2010/31/EU (2010) 2010/31/EU: Directive of the European parliament and of the council of 19 May 2010 on the energy performance of buildings. Available from 30 Oct 2012: http://www.epbd-ca.eu

  • Dong J, Jiang Y, Yao Y, Zhang X (2011) Operating performance of novel reverse-cycle defrosting method based on thermal energy storage for air source heat pump. J Cent South Univ Technol 18(6):2163–2169

    Google Scholar 

  • Entrop AG, Brouwers HJH, Reinders AHME (2011) Experimental research on the use of micro-encapsulated phase change materials to store solar energy in concrete floors and to save energy in Dutch houses. Sol Energy 85(5):1007–1020

    Article  Google Scholar 

  • Evers AC, Medina MA, Fang Y (2010) Evaluation of the thermal performance of frame walls enhanced with paraffin and hydrated salt phase change materials using a dynamic wall simulator. Build Environ 45(8):1762–1768

    Article  Google Scholar 

  • Fallahi A, Haghighat F, Elsadi H (2010) Energy performance assessment of double-skin façade with thermal mass. Energy Build 42(9):1499–1509. doi:10.1016/j.enbuild.2010.03.020

    Article  Google Scholar 

  • Fang G, Liu X, Wu S (2009) Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe. Exp Thermal Fluid Sci 33(8):1149–1155. doi:10.1016/j.expthermflusci.2009.07.004

    Article  Google Scholar 

  • Fang G, Wu S, Liu X (2010) Experimental study on cool storage air-conditioning system with spherical capsules packed bed. Energy Build 42(7):1056–1062. doi:10.1016/j.enbuild.2010.01.018

    Article  Google Scholar 

  • Fernandez AI, Martinez M, Segarra M, Martorell I, Cabeza LF (2010) Selection of materials with potential in sensible thermal energy storage. Sol Energy Mater Sol Cells 94(10):1723–1729. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-77955427486&partnerID=40&md5=57c2ce552a5eaba44202c57daf33dfc0

  • Gu Z, Liu H, Li Y (2004) Thermal energy recovery of air conditioning system—heat recovery system calculation and phase change materials development. Appl Therm Eng 24(17–18):2511–2526. doi:10.1016/j.applthermaleng.2004.03.017

    Article  Google Scholar 

  • Günther E, Hiebler S, Mehling H (2006) Determination of the heat storage capacity of PCM and PCM-objects as a function of temperature. Proc ECOSTOCK, 10th Int. Conference on Thermal Energy Storage

    Google Scholar 

  • Hawes DW, Feldman D, Banu D (1993) Latent heat storage in building materials. Energy Build 20(1):77–86

    Article  Google Scholar 

  • Hed G, Bellander R (2006) Mathematical modelling of PCM air heat exchanger. Energy Build 38(2):82–89. doi:10.1016/j.enbuild.2005.04.002

    Article  Google Scholar 

  • Heier J, Bales C, Martin V (2015) Combining thermal energy storage with buildings—a review. Renew Sustain Energy Rev 42:1305–1325

    Article  Google Scholar 

  • Huang M, Eames P, Norton B (2006) Experimental performance of phase change materials for limiting temperature rise building integrated photovoltaics. Sol Energy 80:1121–1130. Available from http://www.einstein-project.eu/fckeditor_files/D_9_2_EINSTEIN_leaflet_English.pdf

  • IEA (1990) Heat Pump Centre Newsletter

    Google Scholar 

  • IEA (2010) Technology Roadmap. Solar Heating and Cooling

    Google Scholar 

  • IEA (2012) Energy Technology Perspectives (ETP) 2012. International Energy Agency

    Google Scholar 

  • Jin X, Zhang X (2011) Thermal analysis of a double layer phase change material floor. Appl Therm Eng 31(10):1576–1581. doi:10.1016/j.applthermaleng.2011.01.023

    Article  Google Scholar 

  • Jin X, Medina M, Zhang X (2014) On the placement of a phase change material thermal shield within the cavity of buildings walls for heat transfer rate reduction. Energy 73:780–786

    Article  Google Scholar 

  • Joulin A, Zalewski L, Lassue S, Naji H (2014) Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material. Appl Therm Eng 66:171–180

    Google Scholar 

  • Kaygusuz K (1999) Investigation of a combined solar–heat pump system for residential heating. Part 1: experimental results. Int J Energy Res 23:1213–1223

    Article  Google Scholar 

  • Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag 45(2):263–275. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0141510020&partnerID=40&md5=afb9a447d9699dcde0d44119197faa4a

  • Koschenz M, Dorer V (1999) Interaction of an air system with concrete core conditioning. Energy Build 30(2):139–145. doi:10.1016/S0378-7788(98)00081-4

    Google Scholar 

  • Koschenz M, Lehmann B (2004) Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings. Energy Build 36(6):567–578. doi:10.1016/j.enbuild.2004.01.029

    Article  Google Scholar 

  • Kosny J, Petrie T, Gawin D, Childs P, Desjarlais A, Christian J (2014) Energy savings potential in residential buildings

    Google Scholar 

  • Kottek MJ, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of Köppen-Geiger climate classification updated. Mereorol Z 15:259–263

    Article  Google Scholar 

  • Kuznik F, Virgone J (2009) Experimental investigation of wallboard containing phase change material: data for validation of numerical modeling. Energy Build 41(5):561–570

    Google Scholar 

  • Kuznik F, Virgone J, Noel J (2008) Optimization of a phase change material wallboard for building use. Appl Therm Eng 28(11–12):1291–1298

    Google Scholar 

  • Kuznik F, Virgone J, Roux JJ (2008) Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation. Energy Build 40(2):148–156

    Google Scholar 

  • Lai C, Hokoi S (2014) Thermal performance of an aluminum honeycomb wallboard incorporating microencapsulated PCM. Energy Build 73:37–47

    Article  Google Scholar 

  • Lee K, Medina M, Raith E, Sun X (2015a) Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management. Appl Energy 137:699–706

    Article  Google Scholar 

  • Lee K, Medina M, Sun X (2015b) On the use of plug-and-play walls (PPW) for evaluating thermal enhancement technologies for building enclosures: Evaluation of a thin phase change material (PCM) layer. Energy Build 86:86–92

    Article  Google Scholar 

  • Lehmann B, Dorer V, Koschenz M (2007) Application range of thermally activated building systems tabs. Energy Build 39(5):593–598. doi:10.1016/j.enbuild.2006.09.009

    Article  Google Scholar 

  • Lehmann B, Dorer V, Gwerder M, Renggli F, Tödtli J (2011) Thermally activated building systems (TABS): energy efficiency as a function of control strategy, hydronic circuit topology and (cold) generation system. Appl Energy 88(1):180–191. doi:10.1016/j.apenergy.2010.08.010

    Article  Google Scholar 

  • Leonhardt C, Müller D (2009) Modelling of residential heating system using a phase change material storage system. In: Proceedings of the 7th Modelica Conference, pp 20–22. Como, Italy

    Google Scholar 

  • Li L, Yan Q, Jin L, Yue L (2012) Preparation method of shape-stabilized PCM wall and experimental research of thermal performance. Taiyangneng Xuebao/Acta Energiae Solaris Sinica 33(12):2135–2139

    Google Scholar 

  • Llovera J, Potau X, Medrano M, Cabeza L (2010) Design and performance of energy-efficient solar residential house in Andorra. Appl Energy 88:1343–1353

    Article  Google Scholar 

  • Manz H, Egolf PW, Suter P, Goetzberger A (1997) TIM-PCM, external wall system for solar space heating and daylight. Sol Energy 61(6):369–379

    Article  Google Scholar 

  • Medina M, King J, Zhang M (2008) On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs). Energy 33(4):667–678

    Article  Google Scholar 

  • Mehling H, Cabeza L (2008) Heat and cold storage with PCM. Springer, Berlin. Retrieved from ISBN-13: 9783540685562

    Google Scholar 

  • Memon S (2014) Phase change materials integrated in building walls: A state of the art review. Renew Sustain Energy Rev 31(2014):870–906

    Article  Google Scholar 

  • Minglu Q, Liang X, Deng S, Yiqiang J (2010) Improved indoor thermal comfort during defrost with a novel reverse-cycle defrosting method for air source heat pumps. Build Environ 45:2354–2361

    Article  Google Scholar 

  • Moreno P, Castell A, Solé C, Zsembinszki G, Cabeza LF (2014) PCM thermal energy storage tanks in heat pump system for space cooling. Energy Build 82:399–405. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84905819417&partnerID=40&md5=772d19eccde216de15ebe2f2d1aed4dc

  • Moreno P, Solé C, Castell A, Cabeza LF (2014) The use of phase change materials in domestic heat pump and air-conditioning systems for short term storage: a review. Renew Sustain Energy Rev 39:1–13. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84905005142&partnerID=40&md5=32ea981f4780f4d5948103a4718b9ba4

  • N’Tsoukpoe KE, Liu H, Le Pierrès N, Luo L (2009) A review on long-term sorption solar energy storage. Renew Sustain Energy Rev 13(9):2385–2396. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-68749105582&partnerID=40&md5=ac8244725fd2851c4b71bd2c45dfb995

  • Navarro ME, Martínez M, Gil A, Fernández AI, Cabeza LF, Py X (2011) Selection and characterization of recycled materials for sensible thermal energy storage. In: 30th ISES Biennial Solar World Congress 2011, SWC 2011, vol 6, pp 4875–4881. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84873840715&partnerID=40&md5=6c1dae385096f833c6631c7483d6019f

  • Navarro L, de Gracia A, Castell A, Alvarez S, Cabeza L (2014a) Experimental study of a prefabricated concrete slab with PCM. In: Eurotherm Seminar #99, Advances in Thermal Energy Storage

    Google Scholar 

  • Navarro L, de Gracia A, Castell A, Alvarez S, Cabeza L (2014b) Experimental study of a prefabricated concrete slab with PCM. In: Proceedings of Eurotherm Seminar #99, Advances in Thermal Energy Storage

    Google Scholar 

  • Niu F, Ni L, Yao Y, Yu Y, Li H (2013) Performance and thermal charging/discharging features of a phase change material assisted heat pump system in heating mode. Appl Therm Eng 58(1–2):536–541. doi:10.1016/j.applthermaleng.2013.04.042

    Article  Google Scholar 

  • Nomura T, Okinaka N, Akiyama T (2009) Impregnation of porous material with phase change material for thermal energy storage. Mater Chem Phys 115(2–3):846–850

    Google Scholar 

  • Parameshwaran R, Kalaiselvam S, Harikrishnan S, Elayaperumal A (2012) Sustainable thermal energy storage technologies for buildings: a review. Renew Sustain Energy Rev 16(5):2394–2433. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84858401061&partnerID=40&md5=c6d943a3bab67da38f3d55073ffaa4d2

  • Pavlov G, Olesen B (2011) Building thermal energy storage—concepts and applications. In: Roomvent Proceedings, 12th International conference on air distribution in rooms. Norway

    Google Scholar 

  • Pomianowski M, Heiselberg P, Jensen RL (2012) Dynamic heat storage and cooling capacity of a concrete deck with PCM and thermally activated building system. Energy Build 53:96–107. doi:10.1016/j.enbuild.2012.07.007

    Article  Google Scholar 

  • Rempel AR, Rempel AW (2013) Rocks, clays, water, and salts: highly durable, infinitely rechargeable, eminently controllable thermal batteries for buildings. Geosciences 3:63–101

    Google Scholar 

  • Rijksen DO, Wisse CJ, van Schijndel AWM (2010) Reducing peak requirements for cooling by using thermally activated building systems. Energy Build 42(3):298–304. doi:10.1016/j.enbuild.2009.09.007

    Article  Google Scholar 

  • Roulet CA, Rossy JP, Roulet Y (1999) Using large radiant panels for indoor climate conditioning. Energy Build 30(2):121–126. doi:10.1016/S0378-7788(98)00079-6

    Article  Google Scholar 

  • Saadatian O, Sopian K, Lim C, Asim N, Sulaiman M (2012) Trombe walls: a review of opportunities and challenges in research and development. Renew Sustain Energy Rev 16(8):6340–6351

    Article  Google Scholar 

  • Saelens D, Parys W, Baetens R (2011) Energy and comfort performance of thermally activated building systems including occupant behavior. Build Environ 46(4):835–848. doi:10.1016/j.buildenv.2010.10.012

    Article  Google Scholar 

  • Sharma SD, Sagara K (2005) Latent heat storage materials and systems: a review. Int J Green Energy 2(1):1–56

    Article  Google Scholar 

  • Shilei L, Neng Z, Guohui F (2006) Impact of phase change wall room on indoor thermal environment in winter. Energy Build 38(1):18–24

    Article  Google Scholar 

  • Silva T, Vicente R, Soares N, Ferreira V (2012) Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: a passive construction solution. Energy Build 49:235–245

    Article  Google Scholar 

  • Soares N, Samagaio A, Vicente R, Costa J (2011) Numerical simulation of a PCM shutter for buildings space heating during the winter. In: World renewable energy congress, pp 8–13. Linköping, Sweden

    Google Scholar 

  • Soares N, Costa JJ, Gaspar AR, Santos P (2013) Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build 59:82–103

    Article  Google Scholar 

  • Solaresbauen-Grundlagen. Sonnenhaus-Institu e.V. Available from: www.sonnenhaus-institut.de (2014)

  • Stazi F, Mastrucci A, di Perna C (2012) The behaviour of solar walls in residential buildings with different insulation levels: an experimental and numerical study. Energy Build 47:217–229

    Article  Google Scholar 

  • The European Project EINSTEIN (2014) Effective Integration of Seasonal Thermal Energy Storage Systems IN existing buildings. Available from http://www.einstein-project.eu/fckeditor_files/D_9_2_EINSTEIN_leaflet_English.pdf

  • Turnpenny JR, Etheridge DW, Reay DA (2001) Novel ventilation system for reducing air conditioning in buildings. Part II: testing of prototype. Appl Therm Eng 21(12):1203–1217. doi:10.1016/S1359-4311(01)00003-5

    Article  Google Scholar 

  • Tyagi VV, Buddhi D (2007) PCM thermal storage in buildings: a state of the art. Renew Sustain Energy Rev 11:1146–1166

    Article  Google Scholar 

  • Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T (2011) Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sustain Energy Rev 15:1373–1391

    Article  Google Scholar 

  • Ürge-Vorsatz D, Cabeza LF, Serrano S, Barreneche C, Petrichenko K (2015) Heating and cooling energy trends and drivers in buildings. Renew Sustain Energy Rev 41(0):85–98. doi:http://dx.doi.org/10.1016/j.rser.2014.08.039

    Google Scholar 

  • Waqas A, Ud Din Z (2013) Phase change material (PCM) storage for free cooling of buildings—a review. Renew Sustain Energy Rev 18:607–625. doi:10.1016/j.rser.2012.10.034

    Article  Google Scholar 

  • Weinlaeder H, Koerner W, Heidenfelder M (2011) Monitoring results of an interior sun protection system with integrated latent heat storage. Energy Build 43(9):2468–2475

    Article  Google Scholar 

  • Yanbing K, Yi J, Yinping Z (2003) Modeling and experimental study on an innovative passive cooling system—NVP system. Energy Build 35(4):417–425. doi:10.1016/S0378-7788(02)00141-X

    Article  Google Scholar 

  • Yang C, Fischer L, Maranda S, Worlitschek J (2015) Rigid polyurethane foams incorporated with phase change materials: A state-of-the-art review and future research pathways. Energy Build 87:25–36

    Article  Google Scholar 

  • Zalba B, Marín JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23(3):251–283. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0037289573&partnerID=40&md5=7a2e981c4d5bec884b0a0e58a47ba49f

  • Zalba B, Marín JM, Cabeza LF, Mehling H (2004) Free-cooling of buildings with phase change materials. Int J Refrig 27(8):839–849. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-10044257361&partnerID=40&md5=2e6493def785d26d2ce79d3182a819bb

  • Zhang P, Ma ZW, Wang RZ (2010) An overview of phase change material slurries: MPCS and CHS. Renew Sustain Energy Rev 14:598–614

    Article  Google Scholar 

  • Zhang X, Yu S, Yu M, Lin Y (2011) Experimental research on condensing heat recovery using phase change material. Appl Therm Eng 31(17–18):3736–3740. doi:10.1016/j.applthermaleng.2011.03.040

    Article  Google Scholar 

  • Zhou G, Yang Y, Xu H (2011) Performance of shape-stabilized phase change material wallboard with periodical outside heat flux waves. Appl Energy 88:2113–2121

    Article  Google Scholar 

  • Zhou D, Shire G, Tian Y (2014) Parametric analysis of influencing factors in phase change material wallboard (PCMW). Appl Energy 119:33–42

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially funded by the Spanish Government (ENE2011-22722, ENE2011-28269-C03-02, and ULLE10-4E-1305). The authors would like to thank the Catalan Government for the quality accreditation given to their research group GREA (2014 SGR 123) and DIOPMA (2014 SGR 1543). The research leading to these results has received funding from the European Union’s Seventh Framework Program (FP7/2007-2013), under grant agreement No. PIRSES-GA-2013-610692 (INNOSTORAGE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Cabeza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Gracia, A., Barreneche, C., Fernández, A.I., Cabeza, L.F. (2016). The State of the Art for Technologies Used to Decrease Demand in Buildings: Thermal Energy Storage . In: Boemi, SN., Irulegi, O., Santamouris, M. (eds) Energy Performance of Buildings. Springer, Cham. https://doi.org/10.1007/978-3-319-20831-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20831-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20830-5

  • Online ISBN: 978-3-319-20831-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics