Skip to main content

Benamou-Brenier and other continuous numerical methods

  • Chapter
Optimal Transport for Applied Mathematicians

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 87))

  • 9700 Accesses

Abstract

In this chapter we present some numerical methods to solve optimal transport problems. The most famous method is for sure the one due to J.-D. Benamou and Y. Brenier, which transforms the problem into a tractable convex variational problem in dimension d + 1. We describe it strongly using the theory about Wasserstein geodesics (rather than finding the map, this method finds the geodesic curve μ t ). Two other classical continuous methods are presented: the Angenent-Hacker-Tannenbaum method based on the fact that the optimal maps should be a gradient and that removing non-gradient parts decreases the energy and the Loeper-Rapetti method based on the resolution of the Monge-Ampère equation. Both require smooth and nonvanishing densities and special domains to handle boundary data (a rectangle or, better, a torus). In the discussion section, we briefly present some discrete and semi-discrete methods, based on linear programming and Voronoi cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We choose to denote by ϱ the interpolating measures, in order to stress the “continuous” flavor of this method (typically, ϱ is a density, and μ a generic measure).

  2. 2.

    This is typical of 1-homogeneous functionals (the fact that the result is independent of the reference measure).

  3. 3.

    The Uzawa algorithm is actually more general than this: it can handle inequality constraints of the form \(\varphi ^{i}(x) \leq 0\), with the Lagrangian \(L(x,\lambda ) = f(x) +\sum _{i}\lambda ^{i}\varphi ^{i}(x)\) and \(\lambda \in (\mathbb{R}_{+})^{k}\), but we prefer to stick to the equality constraints for simplicity of exposition.

  4. 4.

    We sometimes hear that the simplex method is exponential: this is a worst-case estimate. Also, other solvers for linear programming problems exist, for instance, interior point methods, and their computational cost can be way better than exponential. However, in practice they are all too expensive.

  5. 5.

    We switch back to the language, of economists, who prefer to maximize utility rather than minimizing costs.

  6. 6.

    Observe that this assumption on the values u ij being integer, corresponding to integer costs on each edge in the network interpretation, appears quite often and simplifies the complexity of other algorithms as well. For instance, in [245] a polynomial bound on the cost of a network simplex algorithm is given under this assumption, obtaining \(O(\min (kh\log (kC),kh^{2}\log k)\) for a network with k nodes, h edges, and maximal cost equal to C.

  7. 7.

    See also Example 1.6 in [177] for a first genesis of these ideas.

  8. 8.

    The computation of the gradient, and its continuity, could have been simplified by looking at the subdifferential; see [24].

  9. 9.

    The pictures in the next pages have been kindly provided by B. Lévy and are produced with the same algorithms as in [209].

  10. 10.

    This is the semidiscrete method coming from this idea, implemented in [114]. There is also a continuous counterpart, i.e., a PDE on the Kantorovich potentials \(\psi _{\varepsilon }\). It has been studied from the theoretical point of view in [66], where Bonnotte proved a nontrivial well-posedness result, based on the application of the Nash-Moser implicit function theorem around \(\varepsilon = 0\) (once we are on \(\varepsilon > 0\), the equation is more regular). Later, the same author also started numerical implementations of the time discretization of this equation in [65]. Note that his continuous method recalls in some aspects both the AHT flow described in Section 6.2 (as it starts from the Knothe map, is continuous in time but discretized for numerical purposes, and evolves by imposing prescribed image measure at every time) and the LR Newton’s iterations of Section 6.3 (as the underlying PDE is based on a linearization of the Monge-Ampère equation).

References

  1. M. Agueh, G. Carlier, Barycenters in the Wasserstein space. SIAM J. Math. Ann. 43(2), 904–924 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. R.K. Ahuja, T. Magnanti, J. Orlin, Network Flows: Theory, Algorithms, and Applications (Prentice Hall, Upper Saddle River, 1993)

    MATH  Google Scholar 

  3. G. Alberti, On the structure of singular sets of convex functions. Calc.Var. Part. Differ. Equat. 2, 17–27 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Alberti, L. Ambrosio, A geometrical approach to monotone functions in \(\mathbb{R}^{d}\). Math. Z. 230, 259–316 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Alberti, L. Ambrosio, P. Cannarsa, On the singularities of convex functions. Manuscripta Math. 76, 421–435 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. A.D. Aleksandrov, Almost everywhere existence of the second differential of a convex functions and related properties of convex surfaces. Uchenye Zapisky Leningrad. Gos. Univ. Math. Ser. 37, 3–35 (1939) (in Russian)

    Google Scholar 

  7. L. Ambrosio, Movimenti minimizzanti. Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Natur. 113, 191–246 (1995)

    MathSciNet  Google Scholar 

  8. L. Ambrosio, Lecture notes on optimal transport problems, in Mathematical Aspects of Evolving Interfaces. Lecture Notes in Mathematics (1812) (Springer, New York, 2003), pp. 1–52

    Google Scholar 

  9. L. Ambrosio, N. Gigli, A user’s guide to optimal transport, in Modelling and Optimisation of Flows on Networks. Lecture Notes in Mathematics (2013), Springer Berlin Heidelberg, pp. 1–155

    Google Scholar 

  10. L. Ambrosio, A. Pratelli, Existence and stability results in the L 1 theory of optimal transportation, in Optimal Transportation and Applications, ed. by L.A. Caffarelli, S. Salsa. Lecture Notes in Mathematics (CIME Series, Martina Franca, 2001) 1813 (2003), Springer Berlin Heidelberg, pp. 123–160

    Google Scholar 

  11. L. Ambrosio, G. Savaré, Gradient flows of probability measures, Handbook of Differential Equations, Evolutionary Equations, ed. by C.M. Dafermos, E. Feireisl, vol. 3 (Elsevier, Amsterdam, 2007)

    Google Scholar 

  12. L. Ambrosio, P. Tilli, Topics on Analysis in Metric Spaces. Oxford Lecture Series in Mathematics and its Applications, vol. 25 (Oxford University Press, Oxford, 2004)

    Google Scholar 

  13. L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems (Oxford University Press, Oxford, 2000)

    MATH  Google Scholar 

  14. L. Ambrosio, B. Kirchheim, A. Pratelli, Existence of optimal transport maps for crystalline norms, Duke Math. J. 125, 207–241 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Spaces of Probability Measures. Lectures in Mathematics, ETH Zurich (Birkhäuser, Basel, 2005)

    MATH  Google Scholar 

  16. L. Ambrosio, M. Colombo, G. De Philippis, A. Figalli, Existence of Eulerian solutions to the semigeostrophic equations in physical space: the 2-dimensional periodic case Commun. Part. Differ. Equat. 37(12), 2209–2227 (2012)

    Article  MATH  Google Scholar 

  17. L. Ambrosio, M. Colombo, G. De Philippis, A. Figalli, A global existence result for the semigeostrophic equations in three dimensional convex domains. Discr. Contin. Dyn. Syst. 34(4), 1251–1268 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Ambrosio, N. Gigli, G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below Inv. Math. 195(2), 289–391 (2014)

    MATH  MathSciNet  Google Scholar 

  19. S. Angenent, S. Haker, A. Tannenbaum, Minimizing flows for the Monge–Kantorovich problem. SIAM J. Math. Ann. 35(1), 61–97 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Angenent, S. Haker, A. Tannenbaum, L. Zhu, Optimal transport for registration and warping. Int. J. Comput. Vis. 60(3), 225–240 (2004)

    Article  Google Scholar 

  21. P. Appell, Mémoire sur les déblais et les remblais de systèmes continus ou discontinus, Mémoires présentés par divers savants à l’Académie royale des sciences de l’Institut de France. Sciences mathématiques et physiques. 1827–1914 (2e s. I-XXXV) (1887)

    Google Scholar 

  22. V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. (French) Ann. Inst. Fourier (Grenoble) 16(1), 319–361 (1996)

    Google Scholar 

  23. H. Attouch, G. Buttazzo, G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization (SIAM, Philadelphia, 2006)

    Book  MATH  Google Scholar 

  24. F. Aurenhammer, F. Hoffmann, B. Aronov, Minkowski-type theorems and least-squares clustering. Algorithmica 20, 61–76 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Balka, Y. Peres, Restrictions of Brownian motion, preprint. C. R. Math. Acad. Sci. Paris 352(12), 1057–1061 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Bardelloni, S. Bianchini, The decomposition of optimal transportation problems with convex cost. Preprint available at arxiv.org/pdf/1409.0515

  27. M. Beckmann, A continuous model of transportation. Econometrica 20, 643–660 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Beckmann, T. Puu, Spatial Economics: Density, Potential and Flow (North-Holland, Amsterdam, 1985)

    Google Scholar 

  29. M. Beckmann, C. McGuire, C. Winsten, Studies in Economics of Transportation (Yale University Press, New Haven, 1956)

    Google Scholar 

  30. M. Beiglböck, Cyclical monotonicity and the ergodic theorem. Ergodic Theory Dyn. Syst. 35(3), 710–713 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Beiglböck, N. Juillet, On a problem of optimal transport under marginal martingale constraints. Ann. Probab. (2012) http://arxiv.org/abs/1208.1509

  32. M. Beiglböck, P. Henry-Labordère, F. Penkner, Model-independent bounds for option prices—a mass transport approach. Fin. Stoch. 17(3), 477–501 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. J.-D. Benamou, Y. Brenier, Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère/transport problem. SIAM J. Appl. Math. 58, 1450–1461 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. J.-D. Benamou, Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. J.-D. Benamou, G. Carlier, Augmented Lagrangian methods for transport optimization, mean-field games and degenerate PDEs. (2014) https://hal.inria.fr/hal-01073143

  36. J.-D. Benamou, Y. Brenier, K. Guittet, The Monge-Kantorovich mass transfer and its computational fluid mechanics formulation. Int. J. Numer. Methods Fluids 40(1–2), 21–30 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. J.-D. Benamou, Y. Brenier, K. Guittet, Numerical analysis of a multi-phasic mass transport problem. Contemp. Math. 353, 1–18 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, G. Peyré, Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comput. 37(2), A1111–A1138 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  39. J.-D. Benamou, G. Carlier, Q. Mérigot, É. Oudet, Discretization of functionals involving the Monge-Ampère operator. (2014)

    Google Scholar 

  40. J.-D. Benamou, B. Froese, A. Oberman, Two numerical methods for the elliptic Monge-Ampere equation. ESAIM: Math. Model. Numer. Ann. 44(4), 737–758 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. J.-D. Benamou, B. Froese, A. Oberman, Numerical solution of the Optimal Transportation problem using the Monge–Ampère equation. J. Comput. Phys. 260, 107–126 (2014)

    Article  MathSciNet  Google Scholar 

  42. F. Benmansour, G. Carlier, G. Peyré, F. Santambrogio, Numerical approximation of continuous traffic congestion equilibria. Net. Het. Media 4(3), 605–623 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. F. Benmansour, G. Carlier, G. Peyré, F. Santambrogio, Fast marching derivatives with respect to metrics and applications. Numer. Math. 116(3), 357–381 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  44. P. Bernard, B. Buffoni, The Monge problem for supercritical Mané potentials on compact manifolds. Adv. Math. 207(2), 691–706 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. F. Bernardeau, S. Colombi, E. Gaztanaga, R. Scoccimarro, Large-Scale Structure of the Universe and Cosmological Perturbation Theory. Phys. Rep. 367, 1–248 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  46. M. Bernot, Optimal transport and irrigation. Ph.D. Thesis, ENS Cachan (2005). Available at http://perso.crans.org/bernot

  47. M. Bernot, A. Figalli, Synchronized traffic plans and stability of optima. ESAIM Control Optim. Calc. Var. 14, 864–878 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  48. M. Bernot, V. Caselles, J.-M. Morel, Traffic plans. Publ. Math. 49(2), 417–451 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  49. M. Bernot, V. Caselles, J.-M. Morel, The structure of branched transportation networks. Calc. Var. Part. Differ. Equat. 32(3), 279–317 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  50. M. Bernot, V. Caselles, J.-M. Morel, Optimal Transportation Networks, Models and Theory. Lecture Notes in Mathematics, vol. 1955 (Springer, New York, 2008)

    Google Scholar 

  51. M. Bernot, A. Figalli, F. Santambrogio, Generalized solutions for the Euler equations in one and two dimensions. J. Math. Pures et Appl. 91(2), 137–155 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  52. J. Bertrand, M. Puel, The optimal mass transport problem for relativistic costs. Calc. Var. PDE 46(1–2), 353–374 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  53. D.P. Bertsekas, A distributed algorithm for the assignment problem, in Lab. for Information and Decision Systems Working Paper (MIT, Cambridge, 1979)

    Google Scholar 

  54. D.P. Bertsekas, Auction Algorithms, Encyclopedia of Optimization, Kluwer, (2001)

    Book  Google Scholar 

  55. D.P. Bertsekas, J. Eckstein, Dual coordinate step methods for linear network flow problems. Math. Program. 42(1–3), 203–243 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  56. A. Blanchet, G. Carlier, Optimal transport and Cournot-Nash equilibria. Math. Oper. Res. (to appear). Available at https://www.ceremade.dauphine.fr/~carlier/publis.html

  57. A. Blanchet, V. Calvez, J.A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal. 46(2), 691–721 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  58. A. Blanchet, J.-A. Carrillo, D. Kinderlehrer, M. Kowalczyk, P. Laurençot, S. Lisini, A hybrid variational principle for the Keller-Segel system in \(\mathbb{R}^{2}\). ESAIM M2AN (2015).

    Google Scholar 

  59. A. Blanchet, P. Mossay, F. Santambrogio, Existence and uniqueness of equilibrium for a spatial model of social interactions. Int. Econ. Rev. (2014). cvgmt.sns.it

  60. S. Bianchini, L. Caravenna, On optimality of c-cyclically monotone transference plans. C. R. Math. Acad. Sci. Paris 348(11–12), 613–618 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  61. S. Bianchini, M. Gloyer, On the Euler-Lagrange equation for a variational problem: the general case II. Math. Zeit. 265(4), 889–923 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. G. Blower, Displacement convexity for the generalized orthogonal ensemble. J. Statist. Phys. 116(5-6), 1359–1387 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  63. V.I. Bogachev, A.V. Kolesnikov, The Monge–Kantorovich problem: achievements, connections, and perspectives. Russ. Math. Surv. 67(5), 785–890 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  64. J.F. Bonnans, J.-C. Gilbert, C. Lemarechal, C. Sagastizábal, Numerical Optimization: Theoretical and Practical Aspects, 2nd edn. (Springer, New York, 2006)

    MATH  Google Scholar 

  65. N. Bonnotte, Unidimensional and evolution methods for optimal transportation. Ph.D. Thesis, Université Paris-Sud, 2013

    Google Scholar 

  66. N. Bonnotte, From Knothe’s rearrangement to Brenier’s optimal transport map. SIAM J. Math. Anal. 45(1), 64–87 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  67. G. Bouchitté, G. Buttazzo, New lower semi-continuity results for nonconvex functionals defined on measures. Nonlinear Anal. 15, 679–692 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  68. G. Bouchitté, G. Buttazzo, Integral representation of nonconvex functionals defined on measures. Ann. Inst. H. Poincaré Anal. Non Linéaire 9(1), 101–117 (1992)

    MATH  MathSciNet  Google Scholar 

  69. G. Bouchitté, G. Buttazzo, Relaxation for a class of nonconvex functionals defined on measures. Ann. Inst. H. Poincaré Anal. Non Linéaire 10(3), 345–361 (1993)

    MATH  MathSciNet  Google Scholar 

  70. G. Bouchitté, G. Buttazzo, Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. Eur. Math. Soc. 3(2), 139–168 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  71. G. Bouchitté, G. Buttazzo, P. Seppecher, Shape optimization solutions via Monge-Kantorovich equation. C. R. Acad. Sci. Paris Sér. I Math. 324(10), 1185–1191 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  72. G. Bouchitté, C. Jimenez, M. Rajesh, Asymptotique d’un problème de positionnement optimal. C. R. Acad. Sci. Paris Ser. I 335, 1–6 (2002)

    Article  Google Scholar 

  73. G. Bouchitté, T. Champion, C. Jimenez, Completion of the space of measures in the Kantorovich norm, proc. of “Trends in the Calculus of Variations”, Parma, 2004, E.D. Acerbi and G.R. Mingione Editors. Rivi. Mat. Univ. Parma Ser. 7(4), 127–139 (2005)

    Google Scholar 

  74. G. Bouchitté, C. Jimenez, M. Rajesh, A new L estimate in optimal mass transport. Proc. Am. Math. Soc. 135, 3525–3535 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  75. G. Bouchitté, C. Jimenez, M. Rajesh, Asymptotic analysis of a class of optimal location problems. J. Math. Pures Appl. 95(4), 382–419 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  76. D. Braess, Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1969)

    MathSciNet  MATH  Google Scholar 

  77. A. Braides, Γ-Convergence for Beginners (Oxford University Press, Oxford, 2002)

    Book  MATH  Google Scholar 

  78. A. Brancolini, S. Solimini, On the holder regularity of the landscape function. Interfaces Free Boundaries 13(2), 191–222 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  79. L. Brasco, F. Santambrogio, An equivalent path functional formulation of branched transportation problems. Discr. Contin. Dyn. Syst. A 29(3), 845–871 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  80. L. Brasco, G. Carlier, F. Santambrogio, Congested traffic dynamics, weak flows and very degenerate elliptic equations. J. Math. Pures et Appl. 93(6), 652–671 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  81. L. Brasco, G. Buttazzo, F. Santambrogio, A Benamou-Brenier approach to branched transportation. SIAM J. Math. Ann. 43(2), 1023–1040 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  82. Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs. (French) C. R. Acad. Sci. Paris Sér. I Math. 305(19), 805–808 (1987)

    Google Scholar 

  83. Y. Brenier, The least action principle and the related concept of generalized flows for incompressible perfect fluids. J. Am. Mat. Soc. 2, 225–255 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  84. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44, 375–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  85. Y. Brenier, Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Commun. Pure Appl. Math. 52, 411–452 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  86. Y. Brenier, Optimal transport, convection, magnetic relaxation and generalized Boussinesq equations. J. Nonlinear Sci. 19(5), 547–570 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  87. Y. Brenier, A modified least action principle allowing mass concentrations for the early universe reconstruction problem. Confluentes Mathematici 3(3), 361–385 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  88. Y. Brenier, Rearrangement, convection, convexity and entropy. Philos. Trans. R. Soc. A 371, 20120343 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  89. Y. Brenier, U. Frisch, M. Hénon, G. Loeper, S. Matarrese, R. Mohayaee, A. Sobolevskii, Reconstruction of the early Universe as a convex optimization problem. Mon. Not. R. Astron. Soc. 346, 501–524 (2003)

    Article  Google Scholar 

  90. H. Brezis, Analyse fonctionnelle, Théorie et applications (Masson, Paris, 1983)

    MATH  Google Scholar 

  91. H. Brezis, Liquid crystals and energy estimates for \(\mathbb{S}^{2}\)-valued maps, in Theory and Applications of Liquid Crystals. The IMA Volumes in Mathematics and its Applications, vol. 5 (Springer, New York, 1987), pp. 31–52

    Google Scholar 

  92. M. Burger, M. Franek, C.-B. Schönlieb, Regularized regression and density estimation based on optimal transport. Appl. Math. Res. Express 2012(2), 209–253 (2012)

    MATH  MathSciNet  Google Scholar 

  93. G. Buttazzo, F. Santambrogio, A model for the optimal planning of an urban area. SIAM J. Math. Anal. 37(2), 514–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  94. G. Buttazzo, F. Santambrogio, A mass transportation model for the optimal planning of an Urban region. SIAM Rev. 51(3), 593–610 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  95. G. Buttazzo, É. Oudet, E. Stepanov, Optimal transportation problems with free Dirichlet regions, in Variational Methods for Discontinuous Structures. PNLDE, vol. 51 (Birkhäuser, Basel, 2002), pp. 41–65

    Google Scholar 

  96. G. Buttazzo, C. Jimenez, É. Oudet, An optimization problem for mass transportation with congested dynamics. SIAM J. Control Optim. 48, 1961–1976 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  97. G. Buttazzo, L. De Pascale, P. Gori-Giorgi, Optimal transport meets electronic density functional theory. Phys. Rev. A 85(6), 062502 (2012)

    Google Scholar 

  98. L. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. Ann. Math. 131(1), 129–134 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  99. L. Caffarelli, Interior W 2, p estimates for solutions of the Monge-Ampère equation. Ann. Math. 131(1), 135–150 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  100. L. Caffarelli, Some regularity properties of solutions of Monge Ampère equation. Commun. Pure Appl. Math. 44(8–9), 965–969 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  101. L. Caffarelli, M. Feldman, R. McCann, Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. J. Am. Math. Soc. 15, 1–26 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  102. P. Cannarsa, C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control (Birkhäuser, Basel, 2004)

    MATH  Google Scholar 

  103. L. Caravenna, A proof of Sudakov theorem with strictly convex norms. Math. Z. 268, 371–407 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  104. L. Caravenna, S. Daneri, The disintegration of the Lebesgue measure on the faces of a convex function. J. Funct. Anal. 258(11), 3604–3661 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  105. P. Cardaliaguet, Notes on mean field games (from P.-L. Lions’ lectures at Collège de France). (2013) Available at https://www.ceremade.dauphine.fr/~cardalia/

  106. G. Carlier, I. Ekeland, The structure of cities. J. Global Optim. 29, 371–376 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  107. G. Carlier, I. Ekeland, Equilibrium structure of a bidimensional asymmetric city. Nonlinear Anal. Real World Appl. 8(3), 725–748 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  108. G. Carlier, I. Ekeland, Matching for teams. Econ. Theory 42(2), 397–418 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  109. G. Carlier, B. Nazaret, Optimal transportation for the determinant. ESAIM Control Optim. Calc. Var. 14(4), 678–698 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  110. G. Carlier, F. Santambrogio, A variational model for urban planning with traffic congestion. ESAIM Control Optim. Calc. Var. 11(4), 595–613 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  111. G. Carlier, F. Santambrogio, A continuous theory of traffic congestion and Wardrop equilibria, proceedings of the conference, proceedings of optimization and stochastic methods for spatially distributed information, St Petersburg, 2010, published (English version). J. Math. Sci. 181(6), 792–804 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  112. G. Carlier, C. Jimenez, F. Santambrogio, Optimal transportation with traffic congestion and Wardrop equilibria. SIAM J. Control Optim. 47, 1330–1350 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  113. G. Carlier, L. De Pascale, F. Santambrogio, A strategy for non-strictly convex transport costs and the example of | | xy | | p in \(\mathbb{R}^{2}\). Commun. Math. Sci. 8(4), 931–941 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  114. G. Carlier, A. Galichon, F. Santambrogio, From Knothe’s transport to Brenier’s map and a continuation method for optimal transport. SIAM J. Math. Ann. 41(6), 2554–2576 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  115. J.-A. Carrillo, D. Slepčev, Example of a displacement convex functional of first order Calc. Var. Part. Differ. Equat. 36(4), 547–564 (2009)

    Article  MATH  Google Scholar 

  116. J.-A. Carrillo, R.J. McCann, C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Math. Iberoam. 19, 1–48 (2003)

    MathSciNet  MATH  Google Scholar 

  117. J.-A. Carrillo, R.J. McCann, C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Ann. 179, 217–263 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  118. J.-A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156(2), 229–271 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  119. T. Champion, L. De Pascale, The Monge problem for strictly convex norms in \(\mathbb{R}^{d}\). J. Eur. Math. Soc. 12(6), 1355–1369 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  120. T. Champion, L. De Pascale, The Monge problem in \(\mathbb{R}^{d}\). Duke Math. J. 157(3), 551–572 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  121. T. Champion, L. De Pascale, On the twist condition and c-monotone transport plans. Discr. Contin. Dyn. Syst. 34(4), 1339–1353 (2014)

    MATH  MathSciNet  Google Scholar 

  122. T. Champion, L. De Pascale, P. Juutinen, The -Wasserstein distance: local solutions and existence of optimal transport maps. SIAM J. Math. Ann. 40(1), 1–20 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  123. P. Chen, F. Jiang, X.-P. Yang, Two dimensional optimal transportation for a distance cost with a convex constraint. ESAIM: COCV 19(4), 1064–1075 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  124. P. Chen, F. Jiang, X.-P. Yang, Optimal transportation in \(\mathbb{R}^{d}\) for a distance cost with convex constraint. Zeitschrift fuer Angewandte Mathematik und Physik, 66(3), 587–606 (2015)

    Article  MathSciNet  Google Scholar 

  125. P.-A. Chiappori, R.J. McCann, L.P. Nesheim, Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness. Econ. Theory 42(2), 317–354 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  126. M. Colombo, A. Figalli, Regularity results for very degenerate elliptic equations. J. Math. Pures Appl. 101(1), 94–117 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  127. D. Cordero-Erausquin, Sur le transport de mesures périodiques. C. R. Acad. Sci. Paris Sér. I Math. 329(3), 199–202 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  128. C. Cotar, G. Friesecke, C. Klüppelberg, Density functional theory and optimal transportation with coulomb cost. Commun. Pure Appl. Math. 66(4), 548–599 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  129. C. Cotar, G. Friesecke, C. Klüppelberg, Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg-Kohn functional (in preparation)

    Google Scholar 

  130. M.J.P. Cullen, A Mathematical Theory of Large-Scale Atmosphere/Ocean Flow (Imperial College Press, London, 2006)

    Book  Google Scholar 

  131. M. J. P. Cullen, W. Gangbo, A variational approach for the 2-dimensional semi-geostrophic shallow water equations. Arch. Ration. Mech. Ann. 156(3), 241–273 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  132. B. Dacorogna, J. Moser, On a partial differential equation involving the Jacobian determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire 7(1), 1–26 (1990)

    MATH  MathSciNet  Google Scholar 

  133. G. Dal Maso, An Introduction to Γ-Convergence (Birkhauser, Basel, 1992)

    Google Scholar 

  134. S. Daneri, G. Savaré, Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Ann. 40, 1104–1122 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  135. G.B. Dantzig, Maximization of a linear function of variables subject to linear inequalities, in Activity Analysis of Production and Allocation (Wiley, New York, 1951), pp. 339–347

    Google Scholar 

  136. G.B. Dantzig, Linear programming, in History of Mathematical Programming: A Collection of Personal Reminiscences, ed. by J.K. Lenstra, A.H.G. Rinnooy Kan, A. Schrijver (CWI, Amsterdam, 1991)

    Google Scholar 

  137. E. De Giorgi, New problems on minimizing movements, Boundary Value Problems for PDE and Applications, ed. by C. Baiocchi, J.L. Lions (Masson, Paris, 1993), pp. 81–98

    Google Scholar 

  138. E. De Giorgi, T. Franzoni, Su un tipo di convergenza variazionale. Atti Acc. Naz. Lincei Rend. 58(8), 842–850 (1975)

    MATH  MathSciNet  Google Scholar 

  139. F. Delbaen, W. Schachermayer, What is…a free lunch? Not. Am. Math. Soc. 51(5), 526–528 (2004)

    MATH  MathSciNet  Google Scholar 

  140. J. Delon, J. Salomon, A. Sobolevskii, Fast transport optimization for Monge costs on the circle. SIAM J. Appl. Math. 70(7), 2239–2258 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  141. J. Delon, J. Salomon, A. Sobolevskii, Local matching indicators for transport problems with concave costs. SIAM J. Discr. Math. 26(2), 801–827 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  142. W.E. Deming, F.F. Stephan, On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. 11(4), 427–444 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  143. L. De Pascale, A. Pratelli, Regularity properties for monge transport density and for solutions of some shape optimization problem. Calc. Var. Part. Differ. Equat. 14(3), 249–274 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  144. L. De Pascale, A. Pratelli, Sharp summability for Monge transport density via interpolation. ESAIM Control Optim. Calc. Var. 10(4), 549–552 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  145. L. De Pascale, L.C. Evans, A. Pratelli, Integral estimates for transport densities. Bull. Lond. Math. Soc. 36(3), 383–385 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  146. L. De Pascale, J. Louet, F. Santambrogio, The Monge problem with vanishing gradient penalization: vortices and asymptotical profile. (2015) http://cvgmt.sns.it/paper/2449/

  147. G. De Philippis, A. Figalli, W 2, 1 regularity for solutions of the Monge-Ampère equation. Inv. Math. 192(1), 55–69 (2013)

    Article  MATH  Google Scholar 

  148. G. De Philippis, A. Figalli, Sobolev regularity for Monge-Ampère type equations. SIAM J. Math. Ann. 45(3), 1812–1824 (2013)

    Article  MATH  Google Scholar 

  149. G. De Philippis, A Figalli, The Monge–Ampère equation and its link to optimal transportation. Bull. Am. Math. Soc. 51(4), 527–580 (2014)

    Article  MATH  Google Scholar 

  150. G. De Philippis, A. Figalli, O. Savin, A note on interior \(W^{2,1+\varepsilon }\) estimates for the Monge–Ampère equation. Math. Ann. 357(1), 11–22 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  151. G. De Philippis, A. Mészáros, F. Santambrogio, B. Velichkov, BV estimates in optimal transportation and applications. To appear in Archives of Rational Mechanics and Analysis (2015) http://cvgmt.sns.it/paper/2559/

  152. C. Dellacherie, P.-A. Meyer, Probabilities and Potential. North-Holland Mathematics Studies, vol. 29 (North-Holland, Amsterdam/New York, 1978)

    Google Scholar 

  153. G. Devillanova, S. Solimini, On the dimension of an irrigable measure. Rend. Semin. Mat. Univ. Padova 117, 1–49 (2007)

    MATH  MathSciNet  Google Scholar 

  154. G. Devillanova, S. Solimini, Elementary properties of optimal irrigation patterns. Calc. Var. Part. Differ. Equat. 28(3), 317–349 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  155. S. Di Marino, A. Mészáros, Uniqueness issues for evolutive equations with density constraints (2015) available at http://cvgmt.sns.it/paper/2734/

    Google Scholar 

  156. R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  157. I. Ekeland, R. Temam, Convex Analysis and Variational Problems. Classics in Applied Mathematics, vol. 28 (SIAM, Philadelphia, 1999)

    Google Scholar 

  158. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics (American Mathematical Society, Providence, 2010)

    Google Scholar 

  159. L.C. Evans, W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137(653) (1999)

    Google Scholar 

  160. L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics (CRC, Boca Raton, 1992)

    Google Scholar 

  161. H. Federer, Geometric Measure Theory. Classics in Mathematics (Springer, New York, 1996 (reprint of the 1st edn. Berlin, Heidelberg, New York 1969 edition)

    Google Scholar 

  162. M. Feldman, R. McCann, Uniqueness and transport density in Monge’s mass transportation problem. Calc. Var. Par. Differ. Equat. 15(1), 81–113 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  163. S. Ferradans, N. Papadakis, G. Peyré, J-F. Aujol, Regularized discrete optimal transport. SIAM J. Imag. Sci. 7(3), 1853–1882 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  164. A. Figalli, Regularity of optimal transport maps (after Ma-Trudinger-Wang and Loeper), in Proceedings of the Bourbaki Seminar (2009)

    Google Scholar 

  165. A. Figalli, N. Gigli, A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions. J. Math. Pures et Appl. 94(2), 107–130 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  166. A. Figalli, N. Juillet, Absolute continuity of Wasserstein geodesics in the Heisenberg group. J. Funct. Anal. 255(1), 133–141 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  167. A. Figalli, F. Maggi, A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182(1), 167–211 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  168. A. Figalli, Y.-H. Kim, R.J. McCann, When is multidimensional screening a convex program? J. Econ. Theory 146(2), 454–478 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  169. L.R. Ford Jr., D.R. Fulkerson, Flows in Networks (Princeton University Press, Princeton, 1962)

    MATH  Google Scholar 

  170. M. Fortin, R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Studies in Mathematics and its Applications (North-Holland, Amsterdam, 1983)

    Google Scholar 

  171. I. Fragalà, M.S. Gelli, A. Pratelli, Continuity of an optimal transport in Monge problem. J. Math. Pures Appl. 84(9), 1261–1294 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  172. U. Frisch, S. Matarrese, R. Mohayaee, A. Sobolevski, A reconstruction of the initial conditions of the Universe by optimal mass transportation. Nature 417, 260–262 (2002)

    Article  Google Scholar 

  173. A. Galichon, P. Henry-Labordère, N. Touzi, A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options. Ann. Appl. Probab. 24(1), 312–336 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  174. W. Gangbo, An elementary proof of the polar factorization of vector-valued functions. Arch. Ration. Mech. Anal. 128, 381–399 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  175. W. Gangbo, The Monge mass transfer problem and its applications. Contemp. Math. 226, 79–104 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  176. W. Gangbo, R. McCann, The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  177. W. Gangbo, A. Świȩch, Optimal maps for the multidimensional Monge-Kantorovich problem. Commun. Pure Appl. Math. 51(1), 23–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  178. M. Ghisi, M. Gobbino, The monopolist’s problem: existence, relaxation and approximation. Calc. Var. Part. Differ. Equat. 24(1), 111–129 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  179. N. Ghoussoub, B. Maurey, Remarks on multi-marginal symmetric Monge-Kantorovich problems. Discr. Contin. Dyn. Syst. 34(4), 1465–1480 (2014)

    MATH  MathSciNet  Google Scholar 

  180. N. Ghoussoub, A. Moameni, Symmetric Monge-Kantorovich problems and polar decompositions of vector fields. Geom. Funct. Ann. 24(4), 1129–1166 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  181. É. Ghys, Gaspard Monge, Images des Mathématiques, CNRS (2012), http://images.math.cnrs.fr/Gaspard-Monge,1094.html

  182. N. Gigli, On the inverse implication of Brenier-McCann theorems and the structure of (P 2(M), W 2). Methods Appl. Anal. 18(2), 127–158 (2011)

    MATH  MathSciNet  Google Scholar 

  183. N. Gigli, K. Kuwada, S. Ohta, Heat flow on Alexandrov spaces. Commun. Pure Appl. Math. 66(3), 307–33 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  184. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften, vol. 224 (Springer, Berlin, 1977)

    Google Scholar 

  185. E.N. Gilbert, Minimum cost communication networks. Bell Syst. Tech. J. 46, 2209–2227 (1967)

    Article  Google Scholar 

  186. E.N. Gilbert, H.O. Pollak, Steiner minimal trees. SIAM J. Appl. Math. 16, 1–29 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  187. S. Graf, H. Luschgy, Foundations of Quantization for Probability Distributions (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  188. K. Guittet, Contributions à la résolution numérique de problèmes de transport optimal de masse. Ph.D. thesis, University of Paris 6, 2003

    Google Scholar 

  189. K. Guittet, On the time-continuous mass transport problem and its approximation by augmented lagrangian techniques. SIAM J. Numer. Ann. 41(1), 382–399 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  190. C. Gutiérrez, The Monge-Ampre Equation (Birkhaüser, Basel, 2001)

    Book  Google Scholar 

  191. S. Haker, L. Zhu, A. Tannenbaum, S. Angenent, Optimal mass transport for registration and warping. Int. J. Comput. Vis. 60(3), 225–240 (2004)

    Article  Google Scholar 

  192. S. Helgason, The Radon Transform. Progress in Mathematics (Springer, New York, 1999)

    Google Scholar 

  193. P. Henry-Labordère, N. Touzi, An explicit martingale version of Brenier’s theorem. (2015) http://www.cmap.polytechnique.fr/~touzi/

  194. R. Hug, N. Papadakis, E. Maitre On the convergence of augmented Lagrangian method for optimal transport between nonnegative densities (2015) https://hal.archives-ouvertes.fr/hal-01128793

  195. C. Jimenez, Optimisation de Problèmes de Transport. Ph.D. thesis of Université du Sud-Toulon-Var, 2005

    Google Scholar 

  196. C. Jimenez, Dynamic formulation of optimal transport problems. J. Convex Anal. 15(3), 593–622 (2008)

    MATH  MathSciNet  Google Scholar 

  197. C. Jimenez, F. Santambrogio, Optimal transportation in the quadratic case with a convex constraint. J. Math. Pures Appl. 98(1), 103–113 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  198. R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  199. N. Juillet, On displacement interpolation of measures involved in Brenier’s Theorem. Proc. Am. Math. Soc. 139(10), 3623–3632 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  200. L. Kantorovich, On the transfer of masses. Dokl. Acad. Nauk. USSR 37, 7–8 (1942)

    Google Scholar 

  201. E.F. Keller, L.A. Segel, Initiation of slide mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  202. E.F. Keller, L.A. Segel, Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

    Article  MATH  Google Scholar 

  203. H. Knothe, Contributions to the theory of convex bodies. Mich. Math. J. 4, 39–52 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  204. H.W. Kuhn, The Hungarian method for the assignment problem. Naval Res. Log. Q. 2, 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  205. J.-M. Lasry, P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  206. J.-M. Lasry, P.-L. Lions, Mean-field games. Jpn. J. Math. 2, 229–260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  207. P.W.Y. Lee, On the Jordan-Kinderlehrer-Otto scheme. J. Math. Anal. Appl. 429(1), 131–142 (2015) http://arxiv.org/abs/1408.3180

  208. J. Lellmann, D.A. Lorenz, C. Schönlieb, T. Valkonen, Imaging with Kantorovich-Rubinstein discrepancy. SIAM J. Imag. Sci. 7(4), 2833–2859 (2014)

    Article  MATH  Google Scholar 

  209. B. Lévy, A numerical algorithm for L 2 semi-discrete optimal transport in 3D. ESAIM M2AN (to appear). Available at http://www.loria.fr/~levy/M2AN/transport.pdf

  210. Q.R. Li, F. Santambrogio, X.J. Wang, Regularity in Monge’s mass transfer problem. J. Math. Pures Appl. 102(6), 1015–1040 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  211. P.-L. Lions, Series of lectures on mean filed games, Collège de France, Paris, 2006–2012, video-recorderd and available at the web page http://www.college-de-france.fr/site/audio-video/

  212. S. Lisini, Characterization of absolutely continuous curves in Wasserstein spaces. Calc. Var. Part. Differ. Equat. 28, 85–120 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  213. S.P. Lloyd, Least squares quantization in PCM. IEEE Trans. Inf. Theory IT-28, 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  214. G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 86(1), 68–79 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  215. G. Loeper, The reconstruction problem for the Euler-Poisson system in cosmology. Arch. Ration. Mech. Anal. 179(2), 153–216 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  216. G. Loeper, On the regularity of solutions of optimal transportation problems. Acta Math. 202(2), 241–283 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  217. G. Loeper, F. Rapetti, Numerical solution of the Monge-Ampere equation by a Newton’s method. C. R. Acad. Sci. Paris Ser. 1 340(4), 319–324 (2005)

    Google Scholar 

  218. J. Lott, C. Villani, Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903–991 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  219. X.-N. Ma, N.S. Trudinger, X.-J. Wang, Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177(2), 151–183 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  220. F. Maddalena, S. Solimini, Transport distances and irrigation models. J. Conv. Ann. 16(1), 121–152 (2009)

    MATH  MathSciNet  Google Scholar 

  221. F. Maddalena, S. Solimini, J.-M. Morel, A variational model of irrigation patterns. Interfaces Free Boundaries 5, 391–416 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  222. J. Malý, L. Zajíček, Approximate differentiation: Jarník points. Fund. Math. 140(1), 87–97 (1991)

    MATH  MathSciNet  Google Scholar 

  223. B. Maury, J. Venel, Handling of contacts in crowd motion simulations. Traffic Granular Flow 07, 171–180 (2007)

    MATH  Google Scholar 

  224. B. Maury, J. Venel, A discrete contact model for crowd motion. ESAIM: M2AN 45(1), 145–168 (2011)

    Google Scholar 

  225. B. Maury, A. Roudneff-Chupin, F. Santambrogio, A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci. 20(10), 1787–1821 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  226. B. Maury, A. Roudneff-Chupin, F. Santambrogio, J. Venel, Handling congestion in crowd motion modeling. Net. Het. Media 6(3), 485–519 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  227. R.J. McCann, Existence and uniqueness of monotone measure preserving maps. Duke Math. J. 80, 309–323 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  228. R.J. McCann, N. Guillen, Five lectures on optimal transportation: geometry, regularity and applications. In Analysis and Geometry of Metric Measure Spaces: Lecture Notes of the Seminaire de Mathematiques Superieure (SMS) Montreal 2011. G. Dafni et al, eds. Providence: Amer. Math. Soc. 145–180 (2013)

    Google Scholar 

  229. R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128(1), 153–159 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  230. R.J. McCann, Exact solutions to the transportation problem on the line. Proc. R. Soc. Lond. Ser. A 455, 1341–1380 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  231. R.J. McCann, Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11(3), 589–608 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  232. R. J. McCann, Stable rotating binary stars and fluid in a tube. Houst. J. Math. 32(2), 603–631 (2006)

    MATH  MathSciNet  Google Scholar 

  233. Q. Mérigot, A multiscale approach to optimal transport. Comput. Graph. Forum 30, 1583–1592 (2011)

    Article  Google Scholar 

  234. Q. Mérigot, A comparison of two dual methods for discrete optimal transport, in Geometric Science of Information. Lecture Notes in Computer Science, vol. 8085 Springer Berlin Heidelberg (2013), 389–396

    Google Scholar 

  235. A. Mészáros, F. Silva, A variational approach to second order Mean Field Games with density constraints: the stationary case. J. Math. Pures Appl. (2015). http://cvgmt.sns.it/paper/2630/

  236. V.D. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces, with an appendix by M. Gromov, Lecture notes in Mathematics, vol. 1200 (Springer, Berlin, 1986)

    Google Scholar 

  237. L. Modica, S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14(3), 526–529 (1977)

    Google Scholar 

  238. D. Monderer, L.S. Shapley, Potential games. Games Econ. Behav. 14, 124–143 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  239. G. Monge, Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, 666–704, (1781)

    Google Scholar 

  240. J.-M. Morel, F. Santambrogio, Comparison of distances between measures. Appl. Math. Lett. 20(4), 427–432 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  241. J.-M. Morel, F. Santambrogio, The regularity of optimal irrigation patterns. Arch. Ration. Mech. Ann. 195(2), 499–531 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  242. J. Morovic, P. L. Sun, Accurate 3d image colour histogram transformation. Pattern Recogn. Lett. 24, 1725–1735 (2003)

    Article  Google Scholar 

  243. J. Nash, Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36(1), 48–49 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  244. J. Nash, Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  245. J. B. Orlin, A polynomial time primal network simplex algorithm for minimum cost flows. J. Math. Prog. 78(2), 109–129 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  246. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Commun. Part. Differ. Equat. 26, 101–174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  247. É. Oudet, F. Santambrogio, A Modica-Mortola approximation for branched transport and applications. Arch. Ration. Mech. Ann. 201(1), 115–142 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  248. N. Papadakis, G. Peyré, É. Oudet, Optimal transport with proximal splitting. SIAM J. Imag. Sci. 7(1), 212–238 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  249. B. Pass, Multi-marginal optimal transport: theory and applications. ESAIM: M2AN (2014) available at http://arxiv.org/abs/1406.0026

    MATH  Google Scholar 

  250. P. Pegon, D. Piazzoli, F. Santambrogio, Full characterization of optimal transport plans for concave costs. Discr. Contin. Dyn. Syst. – Series A (DCDS-A) 35(12), 6113–6132

    Google Scholar 

  251. R. Peyre, Non-asymptotic equivalence between W 2 distance and \(\dot{H}^{-1}\) norm. Available at http://arxiv.org/pdf/1104.4631v1.pdf

  252. F. Pitié, A. C. Kokaram, R. Dahyot, Automated colour grading using colour distribution transfer. Comput. Vis. Image Underst. 107(1–2), 123–137 (2007)

    Article  Google Scholar 

  253. A. Pratelli, On the equality between Monge’s infimum and Kantorovich’s minimum in optimal mass transportation. Ann. Inst. H. Poincare’ Probab. Stat. 43(1), 1–13 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  254. A. Pratelli, On the sufficiency of c-cyclical monotonicity for optimality of transport plans. Math. Z. 258(3), 677–690 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  255. J. Rabin, J. Delon, Y. Gousseau, Regularization of transportation maps for color and contrast transfer, in Proceedings of IEEE ICIP’10, 1933–1936 (2010)

    Google Scholar 

  256. J. Rabin, G. Peyré, J. Delon, M. Bernot, Wasserstein Barycenter and its application to texture mixing, in Scale Space and Variational Methods in Computer Vision, ed. by A.M. Bruckstein, B.M. Haar Romeny, A.M. Bronstein, M.M. Bronstein. Lecture Notes in Computer Science, vol. 6667 (Springer, Berlin/Heidelberg, 2012), pp. 435–446

    Google Scholar 

  257. S.T. Rachev, L. Rüschendorf, Mass Transportation Problems. Vol. I: Theory (Springer, New York, 1998)

    Google Scholar 

  258. S.T. Rachev, L. Rüschendorf, Mass Transportation Problems. Vol. II: Applications (Springer, New York, 1998)

    Google Scholar 

  259. E. Reinhard, M. Adhikhmin, B. Gooch, P. Shirley, Color transfer between images. IEEE Trans. Comput. Graph. Appl. 21, 34–41 (2001)

    Article  Google Scholar 

  260. R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970)

    Book  MATH  Google Scholar 

  261. J.-C. Rochet, A necessary and sufficient condition for rationalizability in a quasilinear context. J. Math. Econ. 16(2), 191–200 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  262. J.-C. Rochet, P. Choné, Ironing, sweeping, and multidimensional screening. Econometrica 66(4), 783–826 (1998)

    Article  MATH  Google Scholar 

  263. I. Rodríguez-Iturbe, A. Rinaldo, Fractal River Basins: Chance and Self-Organization (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  264. M. Rosenblatt, Remarks on a multivariate transformation. Ann. Math. Stat. 23, 470–472 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  265. A. Roudneff-Chupin, Modélisation macroscopique de mouvements de foule. Ph.D. Thesis, Université Paris-Sud (2011). Available at www.math.u-psud.fr/ roudneff/Images/ these_roudneff.pdf

  266. T. Roughgarden, Selfish Routing and the Price of Anarchy (MIT, Cambridge, 2005)

    MATH  Google Scholar 

  267. E. Rouy, A. Tourin, A viscosity solution approach to shape from shading. SIAM J. Numer. Anal. 29, 867–884 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  268. W. Rudin, Real and Complex Analysis, 3rd edn. (McGraw-Hill, New York, 1986)

    MATH  Google Scholar 

  269. L. Rüschendorf, On c-optimal random variables. Stat. Probab. Lett. 27, 267–270 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  270. F. Santambrogio, Transport and concentration problems with interaction effects. J. Global Optim. 38(1), 129–141 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  271. F. Santambrogio, Variational problems in transport theory with mass concentration. Ph.D. thesis, Edizioni della Normale, Birkhäuser, 2007

    Google Scholar 

  272. F. Santambrogio, Optimal channel networks, landscape function and branched transport. Interfaces and Free Boundaries 9, 149–169 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  273. F. Santambrogio, Absolute continuity and summability of transport densities: simpler proofs and new estimates. Calc. Var. Par. Differ. Equat. 36(3), 343–354 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  274. F. Santambrogio, Introduction to optimal transport theory, in Optimal Transportation, Theory and Applications, ed. by Y. Ollivier, H. Pajot, C. Villani. The London Mathematical Society, 2014, Lecture notes for a Summer School held in Grenoble (2009), Cambridge University Press pp. 3–21

    Google Scholar 

  275. F. Santambrogio, Models and applications of optimal transport theory, in Optimal Transportation, Theory and Applications, ed. by Y. Ollivier, H. Pajot, C. Villani. The London Mathematical Society, 2014, Lecture notes for a Summer School held in Grenoble, Cambridge University Press (2009), pp. 22–40

    Google Scholar 

  276. F. Santambrogio, Inégalités Isopérimétriques quantitatives via le transport optimal, (d’après A. Figalli, F. Maggi et A. Pratelli), in Proceedings of the Bourbaki Seminar, 2011 (in French)

    Google Scholar 

  277. F. Santambrogio, Flots de gradient dans les espaces métriques et leurs applications (d’après Ambrosio-Gigli-Savaré), in Proceedings of the Bourbaki Seminar, 2013 (in French)

    Google Scholar 

  278. F. Santambrogio, A Dacorogna-Moser approach to flow decomposition and minimal flow problems. ESAIM: Proc. Surv. (SMAI 2013) 45, 265–174 (2014)

    Google Scholar 

  279. F. Santambrogio, V. Vespri, Continuity for a very degenerate elliptic equation in two dimensions. Nonlinear Anal.: Theory Methods Appl. 73, 3832–3841 (2010)

    Google Scholar 

  280. L.-P. Saumier, M. Agueh, B. Khouider, An efficient numerical algorithm for the L 2 optimal transport problem with periodic densities. IMA J. Appl. Math. 80(1), 135–157 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  281. T. Schmidt, \(W^{2,1+\varepsilon }\) estimates for the Monge-Ampère equation. Adv. Math. 240, 672–689 (2013)

    Google Scholar 

  282. E. Schrödinger, Uber die umkehrung der naturgesetze. Sitzungsberichte Preuss. Akad. Wiss. Berlin. Phys. Math. 144, 144–153 (1931)

    MATH  Google Scholar 

  283. J.A. Sethian, Level Set Methods and Fast Marching Methods (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  284. A.I. Shnirelman, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid. (Russian) Mat. Sb. (N.S.) 128(170), 82–109 (1985)

    Google Scholar 

  285. A.I. Shnirelman, Generalized fluid flows, their approximation and applications. Geom. Funct. Anal. 4(5), 586–620 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  286. G.J. Shutts, M.J.P. Cullen, Parcel stability and its relation to semigeostrophic theory. J. Atmos. Sci. 44, 1318–1330 (1987)

    Article  Google Scholar 

  287. S.K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows. Algebra i Analiz 5(4), 206–238 (1993). Later translated into English in St. Petersburg Math. J. 5(4), 841–867 (1994)

    Google Scholar 

  288. K.-T. Sturm, On the geometry of metric measure spaces. I. Acta Math. 196, 65–131 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  289. K.-T. Sturm, On the geometry of metric measure spaces. II. Acta Math. 196, 133–177 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  290. V.N. Sudakov, Geometric problems in the theory of infinite-dimensional probability distributions. Cover to cover translation of Trudy Mat. Inst. Steklov 141 (1976). Proc. Steklov Inst. Math. 2(i–v), 1–178 (1979)

    Google Scholar 

  291. N. Trudinger, X.-J. Wang, On the Monge mass transfer problem. Calc. Var. Part. Differ. Equat. 13, 19–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  292. C. Villani, Topics in Optimal Transportation. Graduate Studies in Mathematics (American Mathematical Society, Providence, 2003)

    Google Scholar 

  293. C. Villani, Optimal Transport: Old and New (Springer, New York, 2008)

    MATH  Google Scholar 

  294. C. Villani, Regularity of optimal transport and cut locus: from nonsmooth analysis to geometry to smooth analysis. Discr. Contin. Dyn. Syst. A 30(2), 559–571 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  295. J.G. Wardrop, Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. 2, 325–378 (1952)

    Google Scholar 

  296. B. White, Rectifiability of flat chains. Ann. Math. (2) 150(1), 165–184 (1999)

    Google Scholar 

  297. Q. Xia, Optimal paths related to transport problems. Commun. Contemp. Math. 5(2), 251–279 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  298. Q. Xia, Interior regularity of optimal transport paths. Calc. Var. Part. Differ. Equat. 20(3), 283–299 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  299. Q. Xia, Numerical simulation of optimal transport paths, in Proceedings of the Second International Conference on Computer Modeling and Simulation (ICCMS 2010), vol. 1 (2010), pp. 521–525

    Google Scholar 

  300. Q. Xia, Boundary regularity of optimal transport paths. Adv. Calc. Var. 4(2), 153–174 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santambrogio, F. (2015). Benamou-Brenier and other continuous numerical methods. In: Optimal Transport for Applied Mathematicians. Progress in Nonlinear Differential Equations and Their Applications, vol 87. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-20828-2_6

Download citation

Publish with us

Policies and ethics