Skip to main content

Endocannabinoids and the Immune System in Health and Disease

  • Chapter
Endocannabinoids

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 231))

Abstract

Endocannabinoids are bioactive lipids that have the potential to signal through cannabinoid receptors to modulate the functional activities of a variety of immune cells. Their activation of these seven-transmembranal, G protein-coupled receptors sets in motion a series of signal transductional events that converge at the transcriptional level to regulate cell migration and the production of cytokines and chemokines. There is a large body of data that supports a functional relevance for 2-arachidonoylglycerol (2-AG) as acting through the cannabinoid receptor type 2 (CB2R) to inhibit migratory activities for a diverse array of immune cell types. However, unequivocal data that supports a functional linkage of anandamide (AEA) to a cannabinoid receptor in immune modulation remains to be obtained. Endocannabinoids, as typical bioactive lipids, have a short half-life and appear to act in an autocrine and paracrine fashion. Their immediate effective action on immune function may be at localized sites in the periphery and within the central nervous system. It is speculated that endocannabinoids play an important role in maintaining the overall “fine-tuning” of the immune homeostatic balance within the host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-AG:

2-Arachidonoylglycerol

Abn-CBD:

Abnormal cannabidiol

AEA:

Anandamide

ALIA:

Autacoid local inflammation antagonism

ApoE:

Apolipoprotein E

Arg-1:

Arginase 1

BBB:

Blood–brain barrier

CB1R:

Cannabinoid receptor type 1

CB2R:

Cannabinoid receptor type 2

ConA:

Concanavalin A

CNS:

Central nervous system

COX:

Cyclooxygenase

ECM:

Extracellular matrix

FAAH:

Fatty acid amide hydrolase

HIV:

Human immunodeficiency virus

HSV-1:

Herpes simplex virus type 1

HUVECs:

Human umbilical vein endothelial cells

IL:

Interleukin

IRAK1BP1:

IL-1 receptor-associated kinase 1 binding protein

iNOS:

Inducible nitric oxide synthase

IFN:

Interferon

LC-APCI-MS:

Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry

L-NAME:

L-NG-nitroarginine methyl ester

LPS:

Lipopolysaccharide

LTB4 :

Leukotriene B4

MAPK:

Mitogen-activated protein kinase

mBSA:

Methylated bovine serum albumin

MCP-1:

Monocyte chemoattractant protein 1

mDCs:

Myeloid dendritic cells

MHC:

Major histocompatibility complex

MKP-1:

Mitogen-activated protein kinase phosphatase 1

MS:

Multiple sclerosis

NADA:

N-Arachidonoyldopamine

NAGly:

N-Arachidonoyl glycine

NK cell:

Natural killer cell

NMDA:

N-Methyl-D-aspartate

NO:

Nitric oxide

PCR:

Polymerase chain reaction

pDCs:

Plasmacytoid dendritic cells

PGD2:

Prostaglandin D2

PGE2:

Prostaglandin E2

PMN:

Polymorphonuclear

PPARγ:

Peroxidase proliferator-activated receptor γ

PSGL1:

P-selectin glycoprotein ligand 1

ROS:

Reactive oxygen species

RSV:

Respiratory syncytial virus

TAK1:

TGF-β-activated kinase 1

Tat:

Trans-activator of transcription

Tc:

Cytotoxic T cells

TCR:

T-cell receptor

Th cells:

T helper cells

TLRs:

Toll-like receptors

TMEV:

Theiler’s murine encephalomyelitis virus

TMEV-IDD:

Theiler’s murine encephalomyelitis virus-induced demyelinating disease

TNF:

Tumor necrosis factor

TRAF6:

TNF receptor-associated factor 6

Tregs :

Regulatory T cells

VCAM:

Vascular cell adhesion molecules

References

  • Arafah K, Croix D, Vizioli J, Desmons A, Fournier I, Salzet M (2013) Involvement of nitric oxide through endocannabinoids release in microglia activation during the course of CNS regeneration in the medicinal leech. Glia 61:636–649

    Article  PubMed  Google Scholar 

  • Balenga NA, Aflaki E, Kargl J, Platzer W, Schröder R, Blättermann S et al (2011) GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils. Cell Res 21:1452–1469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berdyshev EV, Boichot E, Germain N, Allain N, Anger JP, Lagente V (1997) Influence of fatty acid ethanolamides and delta9-tetrahydrocannabinol on cytokine and arachidonate release by mononuclear cells. Eur J Pharmacol 330:231–240

    Article  CAS  PubMed  Google Scholar 

  • Bittner S, Meuth SG, Göbel K, Melzer N, Herrmann AM, Simon OJ et al (2009) TASK1 modulates inflammation and neurodegeneration in autoimmune inflammation of the central nervous system. Brain 132:2501–2516

    Article  PubMed Central  PubMed  Google Scholar 

  • Cabral GA, Toney DM, Fischer-Stenger K, Harrison MP, Marciano-Cabral F (1995) Anandamide inhibits macrophage-mediated killing of tumor necrosis factor-sensitive cells. Life Sci 56:2065–2072

    Article  CAS  PubMed  Google Scholar 

  • Chang YH, Lee ST, Lin WW (2001) Effects of cannabinoids on LPS-stimulated inflammatory mediator release from macrophages: involvement of eicosanoids. J Cell Biochem 81:715–723

    Article  CAS  PubMed  Google Scholar 

  • Chiurchiù V, Cencioni MT, Bisicchia E, De Bardi M, Gasperini C, Borsellino G et al (2013) Distinct modulation of human myeloid and plasmacytoid dendritic cells by anandamide in multiple sclerosis. Ann Neurol 73:626–636

    Article  PubMed  Google Scholar 

  • Chouinard F, Lefebvre JS, Navarro P, Bouchard L, Ferland C, Lalancette-Hébert M et al (2011) The endocannabinoid 2-arachidonoyl-glycerol activates human neutrophils: critical role of its hydrolysis and de novo leukotriene B4 biosynthesis. J Immunol 186:3188–3196

    Article  CAS  PubMed  Google Scholar 

  • Chouinard F, Turcotte C, Guan X, Larose MC, Poirier S, Bouchard L et al (2013) 2-Arachidonoyl-glycerol- and arachidonic acid-stimulated neutrophils release antimicrobial effectors against E. coli, S. aureus, HSV-1, and RSV. J Leukoc Biol 93:267–276

    Article  CAS  PubMed  Google Scholar 

  • Coopman K, Smith LD, Wright KL, Ward SG (2007) Temporal variation in CB2R levels following T lymphocyte activation: evidence that cannabinoids modulate CXCL12-induced chemotaxis. Int Immunopharmacol 7:360–371

    Article  CAS  PubMed  Google Scholar 

  • Correa F, Docagne F, Mestre L, Clemente D, Hernangomez M, Loria F et al (2009) A role for CB2 receptors in anandamide signalling pathways involved in the regulation of IL-12 and IL-23 in microglial cells. Biochem Pharmacol 77:86–100

    Article  CAS  PubMed  Google Scholar 

  • Correa F, Hernangomez M, Mestre L, Loria F, Spagnolo A, Docagne F et al (2010) Anandamide enhances IL-10 production in activated microglia by targeting CB(2) receptors: roles of ERK1/2, JNK, and NF-kappaB. Glia 58:135–147

    Article  PubMed  Google Scholar 

  • Correa F, Hernangómez-Herrero M, Mestre L, Loría F, Docagne F, Guaza C (2011) The endocannabinoid anandamide downregulates IL-23 and IL-12 subunits in a viral model of multiple sclerosis: evidence for a cross-talk between IL-12p70/IL-23 axis and IL-10 in microglial cells. Brain Behav Immun 25:736–749

    Article  CAS  PubMed  Google Scholar 

  • Derocq JM, Bouaboula M, Marchand J, Rinaldi-Carmona M, Ségui M, Casellas P (1998) The endogenous cannabinoid anandamide is a lipid messenger activating cell growth via a cannabinoid receptor-independent pathway in hematopoietic cell lines. FEBS Lett 425:419–425

    Article  CAS  PubMed  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    Article  CAS  PubMed  Google Scholar 

  • Do Y, McKallip RJ, Nagarkatti M, Nagarkatti PS (2004) Activation through cannabinoid receptors 1 and 2 on dendritic cells triggers NF-kappaB-dependent apoptosis: novel role for endogenous and exogenous cannabinoids in immunoregulation. J Immunol 173:2373–2382

    Article  CAS  PubMed  Google Scholar 

  • Donovan J, Grundy D (2012) Endocannabinoid modulation of jejunal afferent responses to LPS. Neurogastroenterol Motil 24:956–e465

    Article  CAS  PubMed  Google Scholar 

  • Facci L, Dal TR, Romanello S, Buriani A, Skaper SD, Leon A (1995) Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci USA 92:3376–3380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandez-Suarez D, Celorrio M, Riezu-Boj JI, Ugarte A, Pacheco R, Gonzalez H, Oyarzabal J, Hillard CJ, Franco R, Aymerich MS (2014) The monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model. Neurobiol Aging 35:2603–2616

    Article  CAS  PubMed  Google Scholar 

  • Galiegue S, Mary S, Marchand J, Dussossoy D, Carrière D, Carayon P et al (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61

    Article  CAS  PubMed  Google Scholar 

  • Gasperi V, Evangelista D, Chiurchiù V, Florenzano F, Savini I, Oddi S et al (2014) 2-Arachidonoylglycerol modulates human endothelial cell/leukocyte interactions by controlling selectin expression through CB1 and CB2 receptors. Int J Biochem Cell Biol 51:79–88

    Article  CAS  PubMed  Google Scholar 

  • Gerard CM, Mollereau C, Vassart G, Parmentier M (1991) Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J 279:129–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gokoh M, Kishimoto S, Oka S, Metani Y, Sugiura T (2005) 2-Arachidonoylglycerol, an endogenous cannabinoid receptor ligand, enhances the adhesion of HL-60 cells differentiated into macrophage-like cells and human peripheral blood monocytes. FEBS Lett 579:6473–6478

    Article  CAS  PubMed  Google Scholar 

  • Gokoh M, Kishimoto S, Oka S, Sugiura T (2007) 2-Arachidonoylglycerol enhances the phagocytosis of opsonized zymosan by HL-60 cells differentiated into macrophage-like cells. Biol Pharm Bull 30:1199–1205

    Article  CAS  PubMed  Google Scholar 

  • Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, De Costa BR et al (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 87:1932–1936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernangomez M, Mestre L, Correa FG, Loria F, Mecha M, Inigo PM et al (2012) CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia 60:1437–1450

    Article  PubMed  Google Scholar 

  • Hu SS, Arnold A, Hutchens JM, Radicke J, Cravatt BF, Wager-Miller J et al (2010) Architecture of cannabinoid signaling in mouse retina. J Comp Neurol 518:3848–3866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jackson AR, Hegde VL, Nagarkatti PS, Nagarkatti M (2014) Characterization of endocannabinoid-mediated induction of myeloid-derived suppressor cells involving mast cells and MCP-1. J Leukoc Biol 95:609–619

    Article  PubMed Central  PubMed  Google Scholar 

  • Katz PS, Sulzer JK, Impastato RA, Teng SX, Rogers EK, Molina P (2014) Endocannabinoid degradation inhibition improves neurobehavioral function, blood brain barrier integrity, and neuroinflammation following mild traumatic brain injury. J Neurotrauma 32:297–306

    Article  PubMed  Google Scholar 

  • Kishimoto S, Gokoh M, Oka S, Muramatsu M, Kajiwara T, Waku K et al (2003) 2-arachidonoylglycerol induces the migration of HL-60 cells differentiated into macrophage-like cells and human peripheral blood monocytes through the cannabinoid CB2 receptor-dependent mechanism. J Biol Chem 278:24469–24475

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto S, Muramatsu M, Gokoh M, Oka S, Waku K, Sugiura T (2005) Endogenous cannabinoid receptor ligand induces the migration of human natural killer cells. J Biol Chem 137:217–223

    CAS  Google Scholar 

  • Kishimoto S, Oka S, Gokoh M, Sugiura T (2006) Chemotaxis of human peripheral blood eosinophils to 2-arachidonoylglycerol: comparison with other eosinophil chemoattractants. Int Arch Allergy Immunol 140:3–7

    Article  CAS  PubMed  Google Scholar 

  • Kraft B, Kress HG (2005) Indirect CB2 receptor and mediator-dependent stimulation of human whole-blood neutrophils by exogenous and endogenous cannabinoids. J Pharmacol Exp Ther 315:641–647

    Article  CAS  PubMed  Google Scholar 

  • Kreutz S, Koch M, Bottger C, Ghadban C, Korf HW, Dehghani F (2009) 2-Arachidonoylglycerol elicits neuroprotective effects on excitotoxically lesioned dentate gyrus granule cells via abnormal-cannabidiol-sensitive receptors on microglial cells. Glia 57:286–294

    Article  PubMed  Google Scholar 

  • Krishnan G, Chatterjee N (2014) Endocannabinoids affect innate immunity of Muller glia during HIV-1 Tat cytotoxicity. Mol Cell Neurosci 59:10–23

    Article  CAS  PubMed  Google Scholar 

  • Kurihara R, Tohyama Y, Matsusaka S, Naruse H, Kinoshita E, Tsujioka T et al (2006) Effects of peripheral cannabinoid receptor ligands on motility and polarization in neutrophil-like HL60 cells and human neutrophils. J Biol Chem 281:12908–12918

    Article  CAS  PubMed  Google Scholar 

  • Lau AH, Chow SS (2003) Effects of cannabinoid receptor agonists on immunologically induced histamine release from rat peritoneal mast cells. Eur J Pharmacol 464:229–235

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Yang KH, Kaminski NE (1995) Effects of putative cannabinoid receptor ligands, anandamide and 2-arachidonyl-glycerol, on immune function in B6C3F1 mouse splenocytes. J Pharmacol Exp Ther 275:529–536

    CAS  PubMed  Google Scholar 

  • Lenglet S, Thomas A, Soehnlein O, Montecucco F, Burger F, Pelli G et al (2013) Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice. Arterioscler Thromb Vasc Biol 33:215–223

    Article  CAS  PubMed  Google Scholar 

  • Lourbopoulos A, Grigoriadis N, Lagoudaki R, Touloumi O, Polyzoidou E, Mavromatis I et al (2011) Administration of 2-arachidonoylglycerol ameliorates both acute and chronic experimental autoimmune encephalomyelitis. Brain Res 16:126–141

    Article  Google Scholar 

  • Maestroni GJ (2004) The endogenous cannabinoid 2-arachidonoyl glycerol as in vivo chemoattractant for dendritic cells and adjuvant for Th1 response to a soluble protein. FASEB J 18:1914–1916

    CAS  PubMed  Google Scholar 

  • Matias I, Pochard P, Orlando P, Salzet M, Pestel J, Di MV (2002) Presence and regulation of the endocannabinoid system in human dendritic cells. Eur J Biochem 269:3771–3778

    Article  CAS  PubMed  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    Google Scholar 

  • McHugh D, Tanner C, Mechoulam R, Pertwee RG, Ross RA (2008) Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2. Mol Pharmacol 73:441–450

    Article  CAS  PubMed  Google Scholar 

  • McHugh D, Hu SS, Rimmerman N, Juknat A, Vogel Z, Walker JM et al (2010) N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci 11:44

    Article  PubMed Central  PubMed  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    Article  CAS  PubMed  Google Scholar 

  • Mestre L, Iñigo PM, Mecha M, Correa FG, Hernangómez-Herrero M, Loría F et al (2011) Anandamide inhibits Theiler’s virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB(1) receptors. J Neuroinflammation 8:102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77:1033–1079

    CAS  PubMed  Google Scholar 

  • Mimura T, Oka S, Koshimoto H, Ueda Y, Watanabe Y, Sugiura T (2012) Involvement of the endogenous cannabinoid 2 ligand 2-arachidonyl glycerol in allergic inflammation. Int Arch Allergy Immunol 159:149–156

    Article  CAS  PubMed  Google Scholar 

  • Molina-Holgado F, Lledó A, Guaza C (1997) Anandamide suppresses nitric oxide and TNF-alpha responses to Theiler’s virus or endotoxin in astrocytes. Neuroreport 8:1929–1933

    Article  CAS  PubMed  Google Scholar 

  • Molina-Holgado F, Molina-Holgado E, Guaza C (1998) The endogenous cannabinoid anandamide potentiates interleukin-6 production by astrocytes infected with Theiler’s murine encephalomyelitis virus by a receptor-mediated pathway. FEBS Lett 433:139–142

    Article  CAS  PubMed  Google Scholar 

  • Molina-Holgado F, Molina-Holgado E, Guaza C, Rothwell NJ (2002) Role of CB1 and CB2 receptors in the inhibitory effects of cannabinoids on lipopolysaccharide-induced nitric oxide release in astrocyte cultures. J Neurosci Res 67:829–836

    Article  CAS  PubMed  Google Scholar 

  • Montecucco F, Matias I, Lenglet S, Petrosino S, Burger F, Pelli G et al (2009) Regulation and possible role of endocannabinoids and related mediators in hypercholesterolemic mice with atherosclerosis. Atherosclerosis 205:433–441

    Article  CAS  PubMed  Google Scholar 

  • Navarrete CM, Fiebich BL, de Vinuesa AG, Hess S, de Oliveira AC, Candelario-Jalil E et al (2009) Opposite effects of anandamide and N-arachidonoyl dopamine in the regulation of prostaglandin E and 8-iso-PGF formation in primary glial cells. J Neurochem 109:452–464

    Article  CAS  PubMed  Google Scholar 

  • Oka S, Ikeda S, Kishimoto S, Gokoh M, Yanagimoto S, Waku K et al (2004) 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces the migration of EoL-1 human eosinophilic leukemia cells and human peripheral blood eosinophils. J Leukoc Biol 76:1002–1009

    Article  CAS  PubMed  Google Scholar 

  • Oka S, Yanagimoto S, Ikeda S, Gokoh M, Kishimoto S, Waku K et al (2005) Evidence for the involvement of the cannabinoid CB2 receptor and its endogenous ligand 2-arachidonoylglycerol in 12-O-tetradecanoylphorbol-13-acetate-induced acute inflammation in mouse ear. J Biol Chem 280:18488–18497

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Gutiérrez S, Molina-Holgado E, Guaza C (2005) Effect of anandamide uptake inhibition in the production of nitric oxide and in the release of cytokines in astrocyte cultures. Glia 52:163–168

    Article  PubMed  Google Scholar 

  • Parolaro D, Massi P, Rubino T, Monti E (2002) Endocannabinoids in the immune system and cancer. Prostaglandins Leukot Essent Fatty Acids 66:319–332

    Article  CAS  PubMed  Google Scholar 

  • Piro JR, Benjamin DI, Duerr JM, Pi Y, Gonzales C, Wood KM, Schwartz JW et al (2012) A dysregulated endocannabinoid-eicosanoid network supports pathogenesis in a mouse model of Alzheimer’s disease. Cell Rep 28:617–623

    Article  Google Scholar 

  • Rettori E, De Laurentiis A, Zorrilla Zubilete M, Rettori V, Elverdin JC (2012) Anti-inflammatory effect of the endocannabinoid anandamide in experimental periodontitis and stress in the rat. Neuroimmunomodulation 19:293–303

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Sakai M, Costa-Pinto FA, Palermo-Neto J (2010) Anandamide prior to sensitization increases cell-mediated immunity in mice. Int Immunopharmacol 10:431–439

    Article  CAS  PubMed  Google Scholar 

  • Rockwell CE, Raman P, Kaplan BL, Kaminski NE (2008) A COX-2 metabolite of the endogenous cannabinoid, 2-arachidonyl glycerol, mediates suppression of IL-2 secretion in activated Jurkat T cells. Biochem Pharmacol 76:353–361

    Article  CAS  PubMed  Google Scholar 

  • Rossi S, Furlan R, De Chiara V, Muzio L, Musella A, Motta C et al (2011) Cannabinoid CB1 receptors regulate neuronal TNF-α effects in experimental autoimmune encephalomyelitis. Brain Behav Immun 25:1242–1248

    Article  CAS  PubMed  Google Scholar 

  • Sanchez Lopez AJ, Roman-Vega L, Ramil TE, Giuffrida A, Garcia-Merino A (2014) Regulation of cannabinoid receptor gene expression and endocannabinoid levels in lymphocyte subsets by IFN-beta: a longitudinal study in multiple sclerosis patients. Clin Exp Immunol 179:119–27

    Article  Google Scholar 

  • Schatz AR, Lee M, Condie RB, Pulaski JT, Kaminski NE (1997) Cannabinoid receptors CB1 and CB2: a characterization of expression and adenylate cyclase modulation within the immune system. Toxicol Appl Pharmacol 142:278–287

    Article  CAS  PubMed  Google Scholar 

  • Schwarz H, Blanco FJ, Lotz M (1994) Anandamide, an endogenous cannabinoid receptor agonist inhibits lymphocyte proliferation and induces apoptosis. J Neuroimmunol 55:107–115

    Article  CAS  PubMed  Google Scholar 

  • Stefano GB, Bilfinger TV, Rialas CM, Deutsch DG (2000) 2-arachidonyl-glycerol stimulates nitric oxide release from human immune and vascular tissues and invertebrate immunocytes by cannabinoid receptor 1. Pharmacol Res 42:317–322

    Article  CAS  PubMed  Google Scholar 

  • Suárez J, Romero-Zerbo SY, Rivera P, Bermúdez-Silva FJ, Pérez J, De Fonseca FR et al (2010) Endocannabinoid system in the adult rat circumventricular areas: an immunohistochemical study. J Comp Neurol 518:3065–3085

    Article  PubMed  Google Scholar 

  • Sugamura K, Sugiyama S, Nozaki T, Matsuzawa Y, Izumiya Y, Miyata K et al (2009) Activated endocannabinoid system in coronary artery disease and anti-inflammatory effects of cannabinoid 1 receptor blockade on macrophages. Circulation 119:28–36

    Article  CAS  PubMed  Google Scholar 

  • Sugawara K, Biro T, Tsuruta D, Toth BI, Kromminga A, Zakany N et al (2012) Endocannabinoids limit excessive mast cell maturation and activation in human skin. J Allergy Clin Immunol 129:726–738

    Article  CAS  PubMed  Google Scholar 

  • Sugiura T, Kondo S, Kishimoto S, Miyashita T, Nakane S, Kodaka T et al (2000) Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells. J Biol Chem 275:605–612

    Article  CAS  PubMed  Google Scholar 

  • Valk P, Verbakel S, Vankan Y, Hol S, Mancham S, Ploemacher R et al (1997) Anandamide, a natural ligand for the peripheral cannabinoid receptor is a novel synergistic growth factor for hematopoietic cells. Blood 90:1448–1457

    CAS  PubMed  Google Scholar 

  • Vannacci A, Zagli G, Marzocca C, Pierpaoli S, Passani MB, Mannaioni PF, Masini E (2002) Down-regulation by cannabinoids of the immunological activation of human basophils and guinea pig mast cells. Inflamm Res 51:S09–S10

    PubMed  Google Scholar 

  • Vannacci A, Giannini L, Passani MB, Di FA, Pierpaoli S, Zagli G et al (2004) The endocannabinoid 2-arachidonylglycerol decreases the immunological activation of Guinea pig mast cells: involvement of nitric oxide and eicosanoids. J Pharmacol Exp Ther 311:256–264

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy A. Cabral .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cabral, G.A., Ferreira, G.A., Jamerson, M.J. (2015). Endocannabinoids and the Immune System in Health and Disease. In: Pertwee, R. (eds) Endocannabinoids. Handbook of Experimental Pharmacology, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-319-20825-1_6

Download citation

Publish with us

Policies and ethics