Skip to main content

Endocannabinoids and the Digestive Tract and Bladder in Health and Disease

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 231))

Abstract

Components of the so-called endocannabinoid system, i.e., cannabinoid receptors, endocannabinoids, as well as enzymes involved in endocannabinoid synthesis and degradation, have been identified both in the gastrointestinal and in the urinary tract. Evidence suggests that the endocannabinoid system is implicated in many gastrointestinal and urinary physiological and pathophysiological processes, including epithelial cell growth, inflammation, analgesia, and motor function. A pharmacological modulation of the endocannabinoid system might be beneficial for widespread diseases such as gastrointestinal reflux disease, irritable bowel syndrome, inflammatory bowel disease, colon cancer, cystitis, and hyperactive bladder. Drugs that inhibit endocannabinoid degradation and raise the level of endocannabinoids, non-psychotropic cannabinoids (notably cannabidiol), and palmitoylethanolamide, an acylethanolamide co-released with the endocannabinoid anandamide, are promising candidates for gastrointestinal and urinary diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2-AG:

2-Arachidonoylglycerol

ABHD6:

α/β-Hydrolase domain-containing protein 6

ACEA:

Arachidonyl-2-chloroethylamide

AEA:

Arachidonoyl ethanolamide

ATP:

Adenosine triphosphate

CB1 :

Cannabinoid receptor type 1

CB2 :

Cannabinoid receptor type 2

CBC:

Cannabichromene

CBD:

Cannabidiol

CBDV:

Cannabidivarin

CBG:

Cannabigerol

CD:

Crohn’s disease

CGRP:

Calcitonin gene-related polypeptide

CNS:

Central nervous system

COX:

Cyclooxygenase

DRG:

Rat dorsal root ganglia

DVC:

Dorsal vagal complex

EDTA:

Ethylenediaminetetraacetic acid

EFS:

Electric field stimulation

ENS:

Enteric nervous system

EP1:

Prostaglandin E receptor 1 (subtype EP1)

FAAH:

Fatty acid amide hydrolase

GI:

Gastrointestinal

GPR119:

G protein-coupled receptor 119

GPR55:

G protein-coupled receptor 55

IBD:

Inflammatory bowel diseases

IBS:

Irritable bowel syndrome

IHC:

Immunohistochemistry

LES:

Lower esophageal sphincter

LPS:

Lipopolysaccharide

MAGL:

Monoacylglycerol lipase

NAAA:

N-acylethanolamine-hydrolyzing acid amidase

NAE:

N-acylethanolamine

NAPE-PLD:

N-acyl phosphatidylethanolamine phospholipase D

OEA:

Oleoylethanolamide

PEA:

Palmitoylethanolamide

PPARs:

Peroxisome proliferator-activated receptors

PPARα:

Peroxisome proliferator-activated receptor α

PPARγ:

Peroxisome proliferator-activated receptor γ

THC:

Δ9-Tetrahydrocannabinol

THCV:

Δ9-Tetrahydrocannabivarin

TNF-α:

Tumor necrosis factor alpha

TRP:

Transient receptor potential channels

TRPM8:

Transient receptor potential cation channel subfamily M member 8

TRPV1:

Transient receptor potential vanilloid 1

TRPV4:

Transient receptor potential vanilloid 4

UC:

Ulcerative colitis

WB:

Western blot

References

  • Adami M, Frati P, Bertini S et al (2002) Gastric antisecretory role and immunohistochemical localization of cannabinoid receptors in the rat stomach. Br J Pharmacol 135:598–606

    Article  Google Scholar 

  • Aizawa N, Hedlund P, Fullhase C et al (2014) Inhibition of peripheral FAAH depresses activities of bladder mechanosensitive nerve fibers of the rat. J Urol 192:956–963

    Article  CAS  PubMed  Google Scholar 

  • Alhamoruni A, Lee AC, Wright KL et al (2010) Pharmacological effects of cannabinoids on the Caco-2 cell culture model of intestinal permeability. J Pharmacol Exp Ther 335:92–102

    Article  CAS  PubMed  Google Scholar 

  • Alhamoruni A, Wright KL, Larvin M et al (2012) Cannabinoids mediate opposing effects on inflammation-induced intestinal permeability. Br J Pharmacol 165:2598–2610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alhouayek M, Muccioli GG (2012) The endocannabinoid system in inflammatory bowel diseases: from pathophysiology to therapeutic opportunity. Trends Mol Med 18:615–625

    Article  CAS  PubMed  Google Scholar 

  • Alhouayek M, Muccioli GG (2014) Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov Today 19:1632–1639

    Article  CAS  PubMed  Google Scholar 

  • Alhouayek M, Lambert DM, Delzenne NM et al (2011) Increasing endogenous 2-arachidonoylglycerol levels counteracts colitis and related systemic inflammation. FASEB J 25:2711–2721

    Article  CAS  PubMed  Google Scholar 

  • Alhouayek M, Bottemanne P, Subramanian KV et al (2015) N-acylethanolamine hydrolyzing acid amidase inhibition increases colon PEA levels and counteracts murine colitis. FASEB J 29(2):650–661

    Article  CAS  PubMed  Google Scholar 

  • Ameloot K, Janssen P, Scarpellini E et al (2010) Endocannabinoid control of gastric sensorimotor function in man. Aliment Pharmacol Ther 31:1123–1131

    CAS  PubMed  Google Scholar 

  • Apodaca G, Balestreire E, Birder LA (2007) The uroepithelial-associated sensory web. Kidney Int 72:1057–1064

    Article  CAS  PubMed  Google Scholar 

  • Avelino A, Cruz C, Nagy I et al (2002) Vanilloid receptor 1 expression in the rat urinary tract. Neuroscience 109:787–798

    Article  CAS  PubMed  Google Scholar 

  • Aviello G, Romano B, Izzo AA (2008) Cannabinoids and gastrointestinal motility: animal and human studies. Eur Rev Med Pharmacol Sci 12(Suppl 1):81–93

    PubMed  Google Scholar 

  • Aviello G, Romano B, Borrelli F et al (2012) Chemopreventive effect of the non-psychotropic phytocannabinoid cannabidiol on experimental colon cancer. J Mol Med 90:925–934

    Article  CAS  PubMed  Google Scholar 

  • Bakali E, Elliott RA, Taylor AH et al (2013) Distribution and function of the endocannabinoid system in the rat and human bladder. Int Urogynecol J Pelvic Floor Dysfunct 24:855–863

    Article  Google Scholar 

  • Bashashati M, Storr MA, Nikas SP et al (2012) Inhibiting fatty acid amide hydrolase normalizes endotoxin-induced enhanced gastrointestinal motility in mice. Br J Pharmacol 165:1556–1571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beaumont H, Jensen J, Carlsson A et al (2009) Effect of delta9-tetrahydrocannabinol, a cannabinoid receptor agonist, on the triggering of transient lower oesophageal sphincter relaxations in dogs and humans. Br J Pharmacol 156:153–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bifulco M, Grimaldi C, Gazzerro P et al (2007) Rimonabant: just an antiobesity drug? Current evidence on its pleiotropic effects. Mol Pharmacol 71:1445–1456

    Article  CAS  PubMed  Google Scholar 

  • Borrelli F, Izzo AA (2009) Role of acylethanolamides in the gastrointestinal tract with special reference to food intake and energy balance. Best Pract Res Clin Endocrinol Metab 23:33–49

    Article  CAS  PubMed  Google Scholar 

  • Borrelli F, Aviello G, Romano B et al (2009) Cannabidiol, a safe and non-psychotropic ingredient of the marijuana plant Cannabis sativa, is protective in a murine model of colitis. J Mol Med 87:1111–1121

    Article  CAS  PubMed  Google Scholar 

  • Borrelli F, Fasolino I, Romano B et al (2013) Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease. Biochem Pharmacol 85:1306–1316

    Article  CAS  PubMed  Google Scholar 

  • Borrelli F, Pagano E, Romano B et al (2014) Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid. Carcinogenesis 35(12):2787–2797

    Article  PubMed  Google Scholar 

  • Borrelli F, Romano B, Petrosino S et al (2015) Palmitoylethanolamide, a naturally occurring lipid, is an orally effective intestinal anti-inflammatory agent. Br J Pharmacol 172(1):142–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brusberg M, Arvidsson S, Kang D et al (2009) CB1 receptors mediate the analgesic effects of cannabinoids on colorectal distension-induced visceral pain in rodents. J Neurosci 29:1554–1564

    Article  CAS  PubMed  Google Scholar 

  • Camilleri M, Lasch K, Zhou W (2012) Irritable bowel syndrome: methods, mechanisms, and pathophysiology. The confluence of increased permeability, inflammation, and pain in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 303:G775–G785

    Article  CAS  PubMed  Google Scholar 

  • Capasso R, Izzo AA, Fezza F et al (2001) Inhibitory effect of palmitoylethanolamide on gastrointestinal motility in mice. Br J Pharmacol 134:945–950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Capasso R, Matias I, Lutz B et al (2005) Fatty acid amide hydrolase controls mouse intestinal motility in vivo. Gastroenterology 129:941–951

    Article  CAS  PubMed  Google Scholar 

  • Capasso R, Borrelli F, Aviello G et al (2008) Cannabidiol, extracted from Cannabis sativa, selectively inhibits inflammatory hypermotility in mice. Br J Pharmacol 154:1001–1008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Capasso R, Aviello G, Borrelli F et al (2011) Inhibitory effect of standardized cannabis sativa extract and its ingredient cannabidiol on rat and human bladder contractility. Urology 77:1006.e9–1006.e15

    Article  Google Scholar 

  • Capasso R, Orlando P, Pagano E et al (2014) Palmitoylethanolamide normalizes intestinal motility in a model of post-inflammatory accelerated transit: involvement of CB1 receptors and TRPV1 channels. Br J Pharmacol 171:4026–4037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Casu MA, Porcella A, Ruiu S et al (2003) Differential distribution of functional cannabinoid CB1 receptors in the mouse gastroenteric tract. Eur J Pharmacol 459:97–105

    Article  CAS  PubMed  Google Scholar 

  • Choukèr A, Kaufmann I, Kreth S et al (2010) Motion sickness, stress and the endocannabinoid system. PLoS One 5, e10752

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cianchi F, Papucci L, Schiavone N et al (2008) Cannabinoid receptor activation induces apoptosis through tumor necrosis factor alpha-mediated ceramide de novo synthesis in colon cancer cells. Clin Cancer Res 14:7691–7700

    Article  CAS  PubMed  Google Scholar 

  • Clapper JR, Moreno-Sanz G, Russo R et al (2010) Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat Neurosci 13:1265–1270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cluny NL, Keenan CM, Duncan M et al (2010) Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone (SAB378), a peripherally restricted cannabinoid CB1/CB2 receptor agonist, inhibits gastrointestinal motility but has no effect on experimental colitis in mice. J Pharmacol Exp Ther 334:973–980

    Article  CAS  PubMed  Google Scholar 

  • Cross-Mellor SK, Ossenkopp KP, Piomelli D et al (2007) Effects of the FAAH inhibitor, URB597, and anandamide on lithium-induced taste reactivity responses: a measure of nausea in the rat. Psychopharmacology 190:135–143

    Article  CAS  PubMed  Google Scholar 

  • D’Argenio G, Valenti M, Scaglione G et al (2006) Up-regulation of anandamide levels as an endogenous mechanism and a pharmacological strategy to limit colon inflammation. FASEB J 20:568–570

    PubMed  Google Scholar 

  • De Filippis D, Esposito G, Cirillo C et al (2011) Cannabidiol reduces intestinal inflammation through the control of neuroimmune axis. PLoS One 6, e28159

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • De Petrocellis L, Bisogno T, Ligresti A et al (2002) Effect on cancer cell proliferation of palmitoylethanolamide, a fatty acid amide interacting with both the cannabinoid and vanilloid signalling systems. Fundam Clin Pharmacol 16:297–302

    Article  PubMed  Google Scholar 

  • Dembiński A, Warzecha Z, Ceranowicz P et al (2006) Cannabinoids in acute gastric damage and pancreatitis. J Physiol Pharmacol 57:137–154

    PubMed  Google Scholar 

  • Di Paola R, Impellizzeri D, Torre A et al (2012) Effects of palmitoylethanolamide on intestinal injury and inflammation caused by ischemia-reperfusion in mice. J Leukoc Biol 91:911–920

    Article  PubMed  CAS  Google Scholar 

  • Duncan M, Mouihate A, Mackie K et al (2008a) Cannabinoid CB2 receptors in the enteric nervous system modulate gastrointestinal contractility in lipopolysaccharide-treated rats. Am J Physiol Gastrointest Liver Physiol 295:G78–G87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duncan M, Thomas AD, Cluny NL et al (2008b) Distribution and function of monoacylglycerol lipase in the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 295:G1255–G1265

    Article  CAS  PubMed  Google Scholar 

  • El Bakali J, Gilleron P, Body-Malapel M et al (2012) 4-Oxo-1,4-dihydropyridines as selective CB(2) cannabinoid receptor ligands. Part 2: discovery of new agonists endowed with protective effect against experimental colitis. J Med Chem 55:8948–8952

    Article  CAS  PubMed  Google Scholar 

  • Esfandyari T, Camilleri M, Ferber I et al (2006) Effect of a cannabinoid agonist on gastrointestinal transit and postprandial satiation in healthy human subjects: a randomized, placebo-controlled study. Neurogastroenterol Motil 18:831–838

    Article  CAS  PubMed  Google Scholar 

  • Esfandyari T, Camilleri M, Busciglio I et al (2007) Effects of a cannabinoid receptor agonist on colonic motor and sensory functions in humans: a randomized, placebo-controlled study. Am J Physiol Gastrointest Liver Physiol 293:G137–G145

    Article  CAS  PubMed  Google Scholar 

  • Esposito G, Capoccia E, Turco F et al (2014) Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-alpha activation. Gut 63:1300–1312

    Article  CAS  PubMed  Google Scholar 

  • Farquhar-Smith WP, Rice AS (2001) Administration of endocannabinoids prevents a referred hyperalgesia associated with inflammation of the urinary bladder. Anesthesiology 94:507–513

    Article  CAS  PubMed  Google Scholar 

  • Farquhar-Smith WP, Jaggar SI, Rice AS (2002) Attenuation of nerve growth factor-induced visceral hyperalgesia via cannabinoid CB(1) and CB(2)-like receptors. Pain 97:11–21

    Article  CAS  PubMed  Google Scholar 

  • Felder CC, Joyce KE, Briley EM et al (1995) Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol 48:443–450

    CAS  PubMed  Google Scholar 

  • Feng CC, Yan XJ, Chen X et al (2014) Vagal anandamide signaling via cannabinoid receptor 1 contributes to luminal 5-HT modulation of visceral nociception in rats. Pain 155:1591–1604

    Article  CAS  PubMed  Google Scholar 

  • Fichna J, Sibaev A, Salaga M et al (2013) The cannabinoid-1 receptor inverse agonist taranabant reduces abdominal pain and increases intestinal transit in mice. Neurogastroenterol Motil 25:e550–e559

    Article  CAS  PubMed  Google Scholar 

  • Fichna J, Salaga M, Stuart J et al (2014) Selective inhibition of FAAH produces antidiarrheal and antinociceptive effect mediated by endocannabinoids and cannabinoid-like fatty acid amides. Neurogastroenterol Motil 26:470–481

    Article  CAS  PubMed  Google Scholar 

  • Freeman RM, Adekanmi O, Waterfield MR et al (2006) The effect of cannabis on urge incontinence in patients with multiple sclerosis: a multicentre, randomised placebo-controlled trial (CAMS-LUTS). Int Urogynecol J Pelvic Floor Dysfunct 17:636–641

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Gaetani S, Oveisi F et al (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425:90–93

    Article  CAS  PubMed  Google Scholar 

  • Gratzke C, Streng T, Park A et al (2009) Distribution and function of cannabinoid receptors 1 and 2 in the rat, monkey and human bladder. J Urol 181:1939–1948

    Article  CAS  PubMed  Google Scholar 

  • Gratzke C, Streng T, Stief CG et al (2011) Cannabinor, a selective cannabinoid-2 receptor agonist, improves bladder emptying in rats with partial urethral obstruction. J Urol 185:731–736

    Article  CAS  PubMed  Google Scholar 

  • Greenhough A, Patsos HA, Williams AC et al (2007) The cannabinoid Δ9-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells. Int J Cancer 121:2172–2180

    Article  CAS  PubMed  Google Scholar 

  • Grider JR, Mahavadi S, Li Y et al (2009) Modulation of motor and sensory pathways of the peristaltic reflex by cannabinoids. Am J Physiol Gastrointest Liver Physiol 297:G539–G549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grinspoon L, Bakalar JB (1995) Marihuana as medicine. A plea for reconsideration. JAMA 273:1875–1876

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson SB, Palmqvist R, Henriksson ML et al (2011) High tumour cannabinoid CB1 receptor immunoreactivity negatively impacts disease-specific survival in stage II microsatellite stable colorectal cancer. PLoS One 6, e23003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gyires K, Rónai AZ, Zádori ZS et al (2014) Angiotensin II-induced activation of central AT1 receptors exerts endocannabinoid-mediated gastroprotective effect in rats. Mol Cell Endocrinol 382:971–978

    Article  CAS  PubMed  Google Scholar 

  • Haller VL, Cichewicz DL, Welch SP (2006) Non-cannabinoid CB1, non-cannabinoid CB2 antinociceptive effects of several novel compounds in the PPQ stretch test in mice. Eur J Pharmacol 546:60–68

    Article  CAS  PubMed  Google Scholar 

  • Harvey BS, Sia TC, Wattchow DA et al (2014) Interleukin 17A evoked mucosal damage is attenuated by cannabidiol and anandamide in a human colonic explant model. Cytokine 65:236–244

    Article  CAS  PubMed  Google Scholar 

  • Hayn MH, Ballesteros I, de Miguel F et al (2008) Functional and immunohistochemical characterization of CB1 and CB2 receptors in rat bladder. Urology 72:1174–1178

    Article  PubMed  Google Scholar 

  • Izzo AA, Camilleri M (2009) Cannabinoids in intestinal inflammation and cancer. Pharmacol Res 60:117–125

    Article  CAS  PubMed  Google Scholar 

  • Izzo AA, Sharkey KA (2010) Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther 126:21–38

    Article  CAS  PubMed  Google Scholar 

  • Izzo AA, Pinto L, Borrelli F et al (2000) Central and peripheral cannabinoid modulation of gastrointestinal transit in physiological states or during the diarrhoea induced by croton oil. Br J Pharmacol 129:1627–1632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Izzo AA, Fezza F, Capasso R et al (2001) Cannabinoid CB1-receptor mediated regulation of gastrointestinal motility in mice in a model of intestinal inflammation. Br J Pharmacol 134:563–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Izzo AA, Capasso F, Costagliola A et al (2003) An endogenous cannabinoid tone attenuates cholera toxin-induced fluid accumulation in mice. Gastroenterology 125:765–774

    Article  CAS  PubMed  Google Scholar 

  • Izzo AA, Aviello G, Petrosino S et al (2008) Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon. J Mol Med 86:89–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Izzo AA, Capasso R, Aviello G et al (2012) Inhibitory effect of cannabichromene, a major non-psychotropic cannabinoid extracted from Cannabis sativa, on inflammation-induced hypermotility in mice. Br J Pharmacol 166:1444–1460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaggar SI, Hasnie FS, Sellaturay S et al (1998) The anti-hyperalgesic actions of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain. Pain 76:189–199

    Article  CAS  PubMed  Google Scholar 

  • Jamontt JM, Molleman A, Pertwee RG et al (2010) The effects of Delta-tetrahydrocannabinol and cannabidiol alone and in combination on damage, inflammation and in vitro motility disturbances in rat colitis. Br J of Pharmacol 160:712–723

    Article  CAS  Google Scholar 

  • Joseph J, Niggemann B, Zaenker KS et al (2004) Anandamide is an endogenous inhibitor for the migration of tumor cells and T lymphocytes. Cancer Immunol Immunother 53:723–728

    Article  CAS  PubMed  Google Scholar 

  • Jung CK, Kang WK, Park JM et al (2013) Expression of the cannabinoid type I receptor and prognosis following surgery in colorectal cancer. Oncol Lett 5:870–876

    PubMed Central  CAS  PubMed  Google Scholar 

  • Keszthelyi D, Troost FJ, Simren M et al (2012) Revisiting concepts of visceral nociception in irritable bowel syndrome. Eur J Pain 16:1444–1454

    Article  CAS  PubMed  Google Scholar 

  • Kimball ES, Schneider CR, Wallace NH et al (2006) Agonists of cannabinoid receptor 1 and 2 inhibit experimental colitis induced by oil of mustard and by dextran sulfate sodium. Am J Physiol 291:G364–G371

    CAS  Google Scholar 

  • Kinsey SG, Nomura DK, O’Neal ST et al (2011) Inhibition of monoacylglycerol lipase attenuates nonsteroidal anti-inflammatory drug-induced gastric hemorrhages in mice. J Pharmacol Exp Ther 338:795–802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klooker TK, Leliefeld KE, Van Den Wijngaard RM et al (2011) The cannabinoid receptor agonist delta-9-tetrahydrocannabinol does not affect visceral sensitivity to rectal distension in healthy volunteers and IBS patients. Neurogastroenterol Motil 23:30–35

    Article  CAS  PubMed  Google Scholar 

  • Koay LC, Rigby RJ, Wright KL (2014) Cannabinoid-induced autophagy regulates suppressor of cytokine signaling-3 in intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 307:G140–G148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lal S, Prasad N, Ryan M et al (2011) Cannabis use amongst patients with inflammatory bowel disease. Eur J Gastroenterol Hepatol 23:891–896

    Article  PubMed  Google Scholar 

  • Lehmann A, Blackshaw LA, Brändén L (2002) Cannabinoid receptor agonism inhibits transient lower esophageal sphincter relaxations and reflux in dogs. Gastroenterology 123:1129–1134

    Article  CAS  PubMed  Google Scholar 

  • Li K, Fichna J, Schicho R et al (2013) A role for O-1602 and G protein-coupled receptor GPR55 in the control of colonic motility in mice. Neuropharmacology 71:255–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ligresti A, Bisogno T, Matias I et al (2003) Possible endocannabinoid control of colorectal cancer growth. Gastroenterology 125:677–687

    Article  CAS  PubMed  Google Scholar 

  • Linsalata M, Notarnicola M, Tutino V et al (2010) Effects of anandamide on polyamine levels and cell growth in human colon cancer cells. Anticancer Res 30:2583–2589

    CAS  PubMed  Google Scholar 

  • Long JZ, LaCava M, Jin X et al (2011) An anatomical and temporal portrait of physiological substrates for fatty acid amide hydrolase. J Lipid Res 52:337–344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mackie K (2005) Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol 168:299–325

    Article  CAS  PubMed  Google Scholar 

  • MacNaughton WK, Van Sickle MD, Keenan CM et al (2004) Distribution and function of the cannabinoid-1 receptor in the modulation of ion transport in the guinea pig ileum: relationship to capsaicin-sensitive nerves. Am J Physiol Gastrointest Liver Physiol 286:G863–G871

    Article  CAS  PubMed  Google Scholar 

  • Martin RS, Luong LA, Welsh NJ et al (2000) Effects of cannabinoid receptor agonists on neuronally-evoked contractions of urinary bladder tissues isolated from rat, mouse, pig, dog, monkey and human. Br J Pharmacol 129:1707–1715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Merriam FV, Wang ZY, Hillard CJ et al (2011) Inhibition of fatty acid amide hydrolase suppresses referred hyperalgesia induced by bladder inflammation. BJU Int 108:1145–1149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muccioli GG (2010) Endocannabinoid biosynthesis and inactivation, from simple to complex. Drug Discov Today 15:474–483

    Article  CAS  PubMed  Google Scholar 

  • Mukerji G, Yiangou Y, Agarwal SK et al (2010) Increased cannabinoid receptor 1-immunoreactive nerve fibers in overactive and painful bladder disorders and their correlation with symptoms. Urology 75(6):1514.e1515–1514.e1520

    Article  Google Scholar 

  • Naftali T, Lev LB, Yablecovitch D, Half E et al (2011) Treatment of Crohn’s disease with cannabis: an observational study. Isr Med Assoc J 13:455–458

    PubMed  Google Scholar 

  • Naftali T, Mechulam R, Lev LB et al (2014) Cannabis for inflammatory bowel disease. Dig Dis 32:468–474

    Article  PubMed  Google Scholar 

  • Naidu PS, Booker L, Cravatt BF et al (2009) Synergy between enzyme inhibitors of fatty acid amide hydrolase and cyclooxygenase in visceral nociception. J Pharmacol Exp Ther 329:48–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nocerino E, Amato M, Izzo AA (2000) Cannabis and cannabinoid receptors. Fitoterapia 71(Suppl 1):S6–S12

    Article  CAS  PubMed  Google Scholar 

  • O’Brien LD, Limebeer CL, Rock EM et al (2013) Anandamide transport inhibition by ARN272 attenuates nausea-induced behaviour in rats, and vomiting in shrews (Suncus murinus). Br J Pharmacol 170:1130–1136

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Overton HA, Babbs AJ, Doel SM et al (2006) Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 3:167–175

    Article  CAS  PubMed  Google Scholar 

  • Pagano E, Montanaro V, Di Girolamo A et al (2015) Effect of non-psychotropic plant-derived cannabinoids on bladder contractility: focus on cannabigerol. Nat Prod Commun 10:1009–1012

    PubMed  Google Scholar 

  • Parker LA, Rock EM, Limebeer CL (2011) Regulation of nausea and vomiting by cannabinoids. Br J Pharmacol 163:1411–1422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parker LA, Niphakis MJ, Downey R et al (2014) Effect of selective inhibition of monoacylglycerol lipase (MAGL) on acute nausea, anticipatory nausea, and vomiting in rats and Suncus murinus. Psychopharmacology 232:583–93

    Article  PubMed  CAS  Google Scholar 

  • Partosoedarso ER, Abrahams TP, Scullion RT et al (2003) Cannabinoid1 receptor in the dorsal vagal complex modulates lower oesophageal sphincter relaxation in ferrets. J Physiol 550:149–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patsos HA, Hicks DJ, Dobson RR et al (2005) The endogenous cannabinoid, anandamide, induces cell death in colorectal carcinoma cells: a possible role for cyclooxygenase 2. Gut 54:1741–1750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pazos MR, Tolón RM, Benito C et al (2008) Cannabinoid CB1 receptors are expressed by parietal cells of the human gastric mucosa. J Histochem Cytochem 56:511–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pertwee RG, Fernando SR (1996) Evidence for the presence of cannabinoid CB1 receptors in mouse urinary bladder. Br J Pharmacol 118:2053–2058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pessina F, Capasso R, Borrelli F et al (2015) Protective effect of palmitoylethanolamide, a naturally-occurring molecule, in a rat model of cystitis. J Urol 193(4):1401–1408

    Article  CAS  PubMed  Google Scholar 

  • Ravikoff Allegretti J, Courtwright A, Lucci M et al (2013) Marijuana use patterns among patients with inflammatory bowel disease. Inflamm Bowel Dis 19:2809–2814

    Article  PubMed  Google Scholar 

  • Rinaldi-Carmona M, Barth F, Heaulme M et al (1994) SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 350:240–244

    Article  CAS  PubMed  Google Scholar 

  • Rock EM, Sticht MA, Duncan M et al (2013) Evaluation of the potential of the phytocannabinoids, cannabidivarin (CBDV) and Δ(9)—tetrahydrocannabivarin (THCV), to produce CB1 receptor inverse agonism symptoms of nausea in rats. Br J Pharmacol 170:671–678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rock EM, Limebeer CL, Parker LA (2014) Anticipatory nausea in animal models: a review of potential novel therapeutic treatments. Exp Brain Res 232:2511–2534

    Article  CAS  PubMed  Google Scholar 

  • Romano B, Borrelli F, Fasolino I et al (2013) The cannabinoid TRPA1 agonist cannabichromene inhibits nitric oxide production in macrophages and ameliorates murine colitis. Br J Pharmacol 169:213–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romano B, Borrelli F, Pagano E et al (2014) Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol. Phytomedicine 21:631–639

    Article  CAS  PubMed  Google Scholar 

  • Rutkowska M, Fereniec-Gołebiewska L (2009) Involvement of nitric oxide in the gastroprotective effect of ACEA, a selective cannabinoid CB1 receptor agonist, on aspirin-induced gastric ulceration. Pharmazie 64:595–597

    CAS  PubMed  Google Scholar 

  • Saitoh C, Kitada C, Uchida W et al (2007) The differential contractile responses to capsaicin and anandamide in muscle strips isolated from the rat urinary bladder. Eur J Pharmacol 570:182–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salaga M, Mokrowiecka A, Zakrzewski PK et al (2014) Experimental colitis in mice is attenuated by changes in the levels of endocannabinoid metabolites induced by selective inhibition of fatty acid amide hydrolase (FAAH). J Crohns Colitis 8:998–1009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salio C, Fischer J, Franzoni MF et al (2002) Pre- and postsynaptic localizations of the CB1 cannabinoid receptor in the dorsal horn of the rat spinal cord. Neuroscience 110:755–764

    Article  CAS  PubMed  Google Scholar 

  • Sanson M, Bueno L, Fioramonti J (2006) Involvement of cannabinoid receptors in inflammatory hypersensitivity to colonic distension in rats. Neurogastroenterol Motil 18:949–956

    Article  CAS  PubMed  Google Scholar 

  • Santoro A, Pisanti S, Grimaldi C et al (2009) Rimonabant inhibits human colon cancer cell growth and reduces the formation of precancerous lesions in the mouse colon. Int J Cancer 125:996–1003

    Article  CAS  PubMed  Google Scholar 

  • Scarpellini E, Blondeau K, Boecxstaens V (2011) Effect of rimonabant on oesophageal motor function in man. Aliment Pharmcol Ther 33:730–737

    Article  CAS  Google Scholar 

  • Schicho R, Storr M (2010) Targeting the endocannabinoid system for gastrointestinal diseases: future therapeutic strategies. Expert Rev Clin Pharmacol 3:193–207

    Article  CAS  PubMed  Google Scholar 

  • Schicho R, Storr M (2012) Topical and systemic cannabidiol improves trinitrobenzene sulfonic acid colitis in mice. Pharmacology 89:149–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharkey KA, Cristino L, Oland LD et al (2007) Arvanil, anandamide and N-arachidonoyl-dopamine (NADA) inhibit emesis through cannabinoid CB1 and vanilloid TRPV1 receptors in the ferret. Eur J Neurosci 25:2773–2782

    Article  CAS  PubMed  Google Scholar 

  • Sharkey KA, Darmani NA, Parker LA (2014) Regulation of nausea and vomiting by cannabinoids and the endocannabinoid system. Eur J Pharmacol 722:134–146

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Yang XJ, Qian W et al (2010) The role of peripheral cannabinoid receptors type 1 in rats with visceral hypersensitivity induced by chronic restraint stress. J Neurogastroenterol Motil 16:281–290

    Article  PubMed Central  PubMed  Google Scholar 

  • Shujaa N, Zadori ZS, Ronai AZ et al (2009) Analysis of the effect of neuropeptides and cannabinoids in gastric mucosal defense initiated centrally in the rat. J Physiol Pharmacol 60:93–100

    PubMed  Google Scholar 

  • Sibaev A, Massa F, Yüce B et al (2006) CB1 and TRPV1 receptors mediate protective effects on colonic electrophysiological properties in mice. J Mol Med 84:513–520

    Article  CAS  PubMed  Google Scholar 

  • Singh UP, Singh NP, Singh B et al (2012) Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10(-/-) mice by attenuating the activation of T cells and promoting their apoptosis. Toxicol Appl Pharmacol 258:256–267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sofia RD, Diamantis W, Edelson J (1978) Effect of delta9-tetrahydrocannabinol on the gastrointestinal tract of the rat. Pharmacology 17:79–82

    Article  CAS  PubMed  Google Scholar 

  • Soumaoro LT, Uetake H, Higuchi T et al (2004) Cyclooxygenase-2 expression: a significant prognostic indicator for patients with colorectal cancer. Clin Cancer Res 10:8465–8471

    Article  CAS  PubMed  Google Scholar 

  • Sticht MA, Long JZ, Rock EM et al (2012) Inhibition of monoacylglycerol lipase attenuates vomiting in Suncus murinus and 2-arachidonoyl glycerol attenuates nausea in rats. Br J Pharmacol 165:2425–2435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Storr MA, Keenan CM, Emmerdinger D (2008) Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors. J Mol Med 86:925–936

    Article  CAS  PubMed  Google Scholar 

  • Storr MA, Keenan CM, Zhang H et al (2009) Activation of the cannabinoid 2 receptor (CB2) protects against experimental colitis. Inflamm Bowel Dis 15:1678–1685

    Article  PubMed  Google Scholar 

  • Strittmatter F, Gandaglia G, Benigni F et al (2012) Expression of fatty acid amide hydrolase (FAAH) in human, mouse, and rat urinary bladder and effects of FAAH inhibition on bladder function in awake rats. Eur Urol 61:98–106

    Article  CAS  PubMed  Google Scholar 

  • Suardíaz M, Estivill-Torrús G, Goicoechea C et al (2007) Analgesic properties of oleoylethanolamide (OEA) in visceral and inflammatory pain. Pain 133:99–110

    Article  PubMed  CAS  Google Scholar 

  • Suárez J, Romero-Zerbo SY, Rivera P et al (2010) Endocannabinoid system in the adult rat circumventricular areas: an immunohistochemical study. J Comp Neurol 518:3065–3085

    Article  PubMed  CAS  Google Scholar 

  • Tourteau A, Andrzejak V, Body-Malapel M et al (2013) 3-Carboxamido-5-aryl-isoxazoles as new CB2 agonists for the treatment of colitis. Bioorg Med Chem 21:5383–5394

    Article  CAS  PubMed  Google Scholar 

  • Tyagi V, Philips BJ, Su R et al (2009) Differential expression of functional cannabinoid receptors in human bladder detrusor and urothelium. J Urol 181:1932–1938

    Article  CAS  PubMed  Google Scholar 

  • Tyler K, Hillard CJ, Greenwood-Van Meerveld B (2000) Inhibition of small intestinal secretion by cannabinoids is CB1 receptor-mediated in rats. Eur J Pharmacol 409:207–211

    Article  CAS  PubMed  Google Scholar 

  • Van Sickle MD, Oland LD, Ho W et al (2001) Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret. Gastroenterology 121:767–774

    Article  PubMed  Google Scholar 

  • Van Sickle MD, Duncan M, Kingsley PJ et al (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310:329–332

    Article  PubMed  CAS  Google Scholar 

  • Velasco G, Sánchez C, Guzmán M (2012) Towards the use of cannabinoids as antitumour agents. Nat Rev Cancer 12:436–444

    Article  CAS  PubMed  Google Scholar 

  • Veress G, Meszar Z, Muszil D et al (2013) Characterisation of cannabinoid 1 receptor expression in the perikarya, and peripheral and spinal processes of primary sensory neurons. Brain Struct Funct 218:733–750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vianna CR, Donato J Jr, Rossi J et al (2012) Cannabinoid receptor 1 in the vagus nerve is dispensable for body weight homeostasis but required for normal gastrointestinal motility. J Neurosci 32:10331–10337

    Article  CAS  PubMed  Google Scholar 

  • Walczak JS, Cervero F (2011) Local activation of cannabinoid CB1 receptors in the urinary bladder reduces the inflammation-induced sensitization of bladder afferents. Mol Pain 7:31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walczak JS, Price TJ, Cervero F (2009) Cannabinoid CB1 receptors are expressed in the mouse urinary bladder and their activation modulates afferent bladder activity. Neuroscience 159:1154–1163

    Article  CAS  PubMed  Google Scholar 

  • Wang EC, Lee JM, Ruiz WG et al (2005) ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. J Clin Invest 115:2412–2422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang D, Wang H, Ning W et al (2008) Loss of cannabinoid receptor 1 accelerates intestinal tumor growth. Cancer Res 68:6468–6476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang ZY, Wang P, Bjorling DE (2013) Activation of cannabinoid receptor 2 inhibits experimental cystitis. Am J Physiol Regul Integr Comp Physiol 304:R846–R853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, Zheng J, Kulkarni A et al (2014) Palmitoylethanolamide regulates development of intestinal radiation injury in a mast cell-dependent manner. Dig Dis Sci 59:2693–2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warzecha Z, Dembinski A, Ceranowicz P (2011) Role of sensory nerves in gastroprotective effect of anandamide in rats. J Physiol Pharmacol 62:207–217

    CAS  PubMed  Google Scholar 

  • Weinhold P, Gratzke C, Streng T et al (2010) TRPA1 receptor induced relaxation of the human urethra involves TRPV1 and cannabinoid receptor mediated signals, and cyclooxygenase activation. J Urol 183:2070–2076

    Article  CAS  PubMed  Google Scholar 

  • Wong BS, Camilleri M, Busciglio I et al (2011) Pharmacogenetic trial of a cannabinoid agonist shows reduced fasting colonic motility in patients with nonconstipated irritable bowel syndrome. Gastroenterology 141:1638–1647.e1–1638–1647.e7

    Article  CAS  Google Scholar 

  • Wright K, Rooney N, Feeney M et al (2005) Differential expression of cannabinoid receptors in the human colon: cannabinoids promote epithelial wound healing. Gastroenterology 129:437–453

    Article  PubMed  Google Scholar 

  • Yamada T, Ueda T, Shibata Y et al (2010) TRPV2 activation induces apoptotic cell death in human T24 bladder cancer cells: a potential therapeutic target for bladder cancer. Urology 76:509.e1–509.e7

    Article  Google Scholar 

  • Ye L, Zhang B, Seviour EG et al (2011) Monoacylglycerol lipase (MAGL) knockdown inhibits tumor cells growth in colorectal cancer. Cancer Lett 307:6–17

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Wang XL, Mo FF et al (2014) Dexamethasone alleviates motion sickness in rats in part by enhancing the endocannabinoid system. Eur J Pharmacol 727:99–105

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo A. Izzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Izzo, A.A., Muccioli, G.G., Ruggieri, M.R., Schicho, R. (2015). Endocannabinoids and the Digestive Tract and Bladder in Health and Disease. In: Pertwee, R. (eds) Endocannabinoids. Handbook of Experimental Pharmacology, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-319-20825-1_15

Download citation

Publish with us

Policies and ethics