A Neurocognitive Approach to Expertise in Visual Object Recognition

  • Assaf HarelEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9183)


How can we enhance the ability of observers to pick-up visual information? One approach to this question has been to investigate people who naturally develop an exceptional skill, or expertise, in visual object recognition (e.g. bird watchers, car buffs), and determine how expert processing and the neural substrates supporting it differ from those in novices. The present paper will describe the mainstream view of visual expertise, which considers it to be an automatic, stimulus-driven perceptual skill that is supported by specific regions in high-level visual cortex. Following a critical review of the perceptual framework of expertise, a series of neuroimaging studies will be presented which reveal that in contrast to the mainstream view, visual expertise emerges from multiple interactions within and between the visual system and other cognitive systems (e.g. top-down attention and conceptual memory). These interactions are manifest in widespread distributed patterns of activity across the entire cortex, and are highly susceptible to high-level factors, such as task relevance and prior knowledge. Lastly, the applied and theoretical implications of the interactive framework to performance enhancement and neuroplasticity will be discussed.


Expertise Object recognition Vision Top-down control fMRI 


  1. 1.
    Ericsson, K.A., Lehmann, A.C.: Expert and exceptional performance: evidence of maximal adaptation to task constraints. Annu. Rev. Psychol. 47, 273–305 (1996)CrossRefGoogle Scholar
  2. 2.
    Harel, A., Gilaie-Dotan, S., Malach, R., Bentin, S.: Top-Down engagement modulates the neural expressions of visual expertise. Cereb. Cortex 20, 2304–2318 (2010)CrossRefGoogle Scholar
  3. 3.
    Harel, A., Bentin, S.: Are all types of expertise created equal? Car experts use different spatial frequency scales for subordinate categorization of cars and faces. PLoS ONE 8, e67024 (2013)CrossRefGoogle Scholar
  4. 4.
    Bukach, C.M., Phillips, W.S., Gauthier, I.: Limits of generalization between categories and implications for theories of category specificity. Atten. Percept. Psychophys. 72, 1865–1874 (2010)CrossRefGoogle Scholar
  5. 5.
    Bukach, C.M., Gauthier, I., Tarr, M.J.: Beyond faces and modularity: the power of an expertise framework. Trends Cogn. Sci. 10, 159–166 (2006)CrossRefGoogle Scholar
  6. 6.
    Gauthier, I., Skudlarski, P., Gore, J.C., Anderson, A.W.: Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci. 3, 191–197 (2000)CrossRefGoogle Scholar
  7. 7.
    Tanaka, J.W., Gauthier, I.: Expertise in object and face recognition. Psychol. Learn. Motiv. 36, 83–125 (1997)CrossRefGoogle Scholar
  8. 8.
    Diamond, R., Carey, S.: Why faces are and are not special. an effect of expertise. J. Exp. Psychol. Gen. 115, 107–117 (1986)CrossRefGoogle Scholar
  9. 9.
    Tanaka, J.W., Taylor, M.: Object categories and expertise - is the basic level in the eye of the beholder. Cogn. Psychol. 23, 457–482 (1991)CrossRefGoogle Scholar
  10. 10.
    Logothetis, I.G.N.K., Gauthier, I.: Is face recognition not so unique after all? Cogn. Neuropsychol. 17, 125–142 (2000)CrossRefGoogle Scholar
  11. 11.
    Sigala, N., Logothetis, N.K.: Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415, 318–320 (2002)CrossRefGoogle Scholar
  12. 12.
    Baker, C.I., Behrmann, M., Olson, C.R.: Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nat. Neurosci. 5, 1210–1216 (2002)CrossRefGoogle Scholar
  13. 13.
    Lu, Z.L., Hua, T., Huang, C.B., et al.: Visual perceptual learning. Neurobiol. Learn. Mem. 95, 145–151 (2011)CrossRefGoogle Scholar
  14. 14.
    Op de Beeck, H.P., Baker, C.I.: The neural basis of visual object learning. Trends Cogn. Sci. 14, 22–30 (2010)CrossRefGoogle Scholar
  15. 15.
    Tanaka, J.W.: The entry point of face recognition: Evidence for face expertise. J. Exp. Psychol. Gen. 130, 534–543 (2001)CrossRefGoogle Scholar
  16. 16.
    Maurer, D., Grand, R.L., Mondloch, C.J.: The many faces of configural processing. Trends Cogn. Sci. 6, 255–260 (2002). doi: 10.1016/S1364661302019034 [pii]CrossRefGoogle Scholar
  17. 17.
    Palermo, R., Rhodes, G.: Are you always on my mind? A review of how face perception and attention interact. Neuropsychologia 45, 75–92 (2007)CrossRefGoogle Scholar
  18. 18.
    McKone, E., Kanwisher, N., Duchaine, B.C.: Can generic expertise explain special processing for faces? Trends Cogn. Sci. 11, 8–15 (2007)CrossRefGoogle Scholar
  19. 19.
    Tanaka, J.W., Curran, T.: A neural basis for expert object recognition. Psychol. Sci. 12, 43–47 (2001)CrossRefGoogle Scholar
  20. 20.
    Kanwisher, N., McDermott, J., Chun, M.M.: The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997)Google Scholar
  21. 21.
    Gauthier, I., Tarr, M.J., Anderson, A.W., et al.: Activation of the middle fusiform “face area” increases with expertise in recognizing novel objects. Nat. Neurosci. 2, 568–573 (1999)CrossRefGoogle Scholar
  22. 22.
    Xu, Y.: Revisiting the role of the fusiform face area in visual expertise. Cereb. Cortex 15, 1234–1242 (2005)CrossRefGoogle Scholar
  23. 23.
    Bilalić, M., Langner, R., Ulrich, R., Grodd, W.: Many faces of expertise: fusiform face area in chess experts and novices. J. Neurosci. 31, 10206–10214 (2011)CrossRefGoogle Scholar
  24. 24.
    McGugin, R.W., Gatenby, J.C., Gore, J.C., Gauthier, I.: High-resolution imaging of expertise reveals reliable object selectivity in the fusiform face area related to perceptual performance. Proc. Natl. Acad. Sci. USA 109, 17063–17068 (2012)CrossRefGoogle Scholar
  25. 25.
    Krawczyk, D.C., Boggan, A.L., McClelland, M.M., Bartlett, J.C.: The neural organization of perception in chess experts. Neurosci. Lett. 499, 64–69 (2011)CrossRefGoogle Scholar
  26. 26.
    Rhodes, G., Byatt, G., Michie, P.T., Puce, A.: Is the fusiform face area specialized for faces, individuation, or expert individuation? J. Cogn. Neurosci. 16, 189–203 (2004)CrossRefGoogle Scholar
  27. 27.
    Brants, M., Wagemans, J., Op de Beeck, H.P.: Activation of fusiform face area by Greebles is related to face similarity but not expertise. J. Cogn. Neurosci. 23, 3949–3958 (2011)CrossRefGoogle Scholar
  28. 28.
    Golan, T., Bentin, S., DeGutis, J., et al.: Association and dissociation between detection and discrimination of objects of expertise: evidence from visual search. Atten. Percept. Psychophys. 76, 1–16 (2013)Google Scholar
  29. 29.
    Reddy, L., Moradi, F., Koch, C.: Top-down biases win against focal attention in the fusiform face area. Neuroimage 38, 730–739 (2007)CrossRefGoogle Scholar
  30. 30.
    Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002)CrossRefGoogle Scholar
  31. 31.
    Harel, A., Kravitz, D., Baker, C.I.: Beyond perceptual expertise: revisiting the neural substrates of expert object recognition. Front Hum. Neurosci. 7, 885 (2013)CrossRefGoogle Scholar
  32. 32.
    Martin, A.: The representation of object concepts in the brain. Annu. Rev. Psychol. 58, 25–45 (2007)CrossRefGoogle Scholar
  33. 33.
    Barton, J.J.S., Hanif, H., Ashraf, S.: Relating visual to verbal semantic knowledge: the evaluation of object recognition in prosopagnosia. Brain 132, 3456–3466 (2009)CrossRefGoogle Scholar
  34. 34.
    Harel, A., Bentin, S.: Stimulus type, level of categorization, and spatial-frequencies utilization: implications for perceptual categorization hierarchies. J. Exp. Psychol. Hum. Percept. Perform. 35, 1264 (2009)CrossRefGoogle Scholar
  35. 35.
    Gilaie-Dotan, S., Harel, A., Bentin, S., et al.: Neuroanatomical correlates of visual car expertise. Neuroimage 62, 147–153 (2012)CrossRefGoogle Scholar
  36. 36.
    Gauthier, I., James, T.W., Curby, K.M., Tarr, M.J.: The influence of conceptual knowledge on visual discrimination. Cogn. Neuropsychol. 20, 507–523 (2003)CrossRefGoogle Scholar
  37. 37.
    Schyns, P.G.: Diagnostic recognition: task constraints, object information, and their interactions. Cognition 67, 147–179 (1998)CrossRefGoogle Scholar
  38. 38.
    Schyns, P.G., Goldstone, R.L., Thibaut, J.P.: The development of features in object concepts. Behav. Brain Sci. 21, 1–54 (1998)Google Scholar
  39. 39.
    Harel, A., Kravitz, D.J., Baker, C.I.: Task context impacts visual object processing differentially across the cortex. Proc. Natl. Acad. Sci. USA 111, E962–E971 (2014)CrossRefGoogle Scholar
  40. 40.
    McGugin, R.W., Van Gulick, A.E., Tamber-Rosenau, B.J., et al.: Expertise effects in face-selective areas are robust to clutter and diverted attention, but not to competition. Cereb. Cortex (2014). doi: 10.1093/cercor/bhu060
  41. 41.
    McGugin, R.W., Newton, A.T., Gore, J.C., Gauthier, I.: Robust expertise effects in right FFA. Neuropsychologia 63, 135–144 (2014)CrossRefGoogle Scholar
  42. 42.
    Bilalić, M., Langner, R., Erb, M., Grodd, W.: Mechanisms and neural basis of object and pattern recognition: a study with chess experts. J. Exp. Psychol. Gen. 139, 728–742 (2010)CrossRefGoogle Scholar
  43. 43.
    Bartlett, J.C., Boggan, A.L., Krawczyk, D.C.: Expertise and processing distorted structure in chess. Front Hum. Neurosci. 7, 825 (2013)CrossRefGoogle Scholar
  44. 44.
    Ashburner, J., Friston, K.J.: Voxel-based morphometry—the methods. Neuroimage 11, 805–821 (2000)CrossRefGoogle Scholar
  45. 45.
    Wagner, A.D., Bunge, S.A., Badre, D.: Cognitive control, semantic memory, and priming: contributions from prefrontal cortex. Cogn. Neurosci. III, 709–726 (2004)Google Scholar
  46. 46.
    Dennett, H.W., McKone, E., Tavashmi, R., et al.: The Cambridge Car Memory Test: a task matched in format to the Cambridge Face Memory Test, with norms, reliability, sex differences, dissociations from face memory, and expertise effects. Behav. Res. Methods 44, 587–605 (2012)CrossRefGoogle Scholar
  47. 47.
    Abreu, A.M., Macaluso, E., Azevedo, R.T., et al.: Action anticipation beyond the action observation network: a functional magnetic resonance imaging study in expert basketball players. Eur. J. Neurosci. 35, 1646–1654 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of PsychologyWright State UniversityDaytonUSA

Personalised recommendations