Advertisement

Field-Theoretic Modeling Method for Emotional Context in Social Media: Theory and Case Study

  • Monte HancockEmail author
  • Shakeel Rajwani
  • Chloe Lo
  • Suraj Sood
  • Elijah Kresses
  • Cheryl Bleasdale
  • Nathan Dunkel
  • Elise Do
  • Gareth Rees
  • Jared Steirs
  • Christopher Romero
  • Dan Strohschein
  • Keith Powell
  • Rob French
  • Nicholas Fedosenko
  • Chris Casimir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9183)

Abstract

Just as masses and charges give rise to gravitational and electric fields, the online behaviors of individuals engaged in online social discourse give rise to an “emotional context” that conditions, and is conditioned by, these behaviors. Using Information Geometry and Unsupervised Learning, we have formulated a mathematical field theory for modeling online emotional context. This theory has been used to create a soft-ware application, Sirius15, that infers, characterizes, and visualizes the field structure (“emotional context”) arising from this discourse. A mathematical approach is presented to social media modeling that enables automated characterization and analysis of the emotional context associated with social media interactions. The results of a small, preliminary case study carried out by our team are presented.

Keywords

Social Medium Online Behavior Emotional Context Original Feature Space Output Text 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lee, S., Song, J., Kim, Y.: An empirical comparison of four text mining methods (2010)Google Scholar
  2. 2.
    Torgerson, Warren S.: Theory & Methods of Scaling. Wiley, New York (1958). ISBN 0-89874-722-8Google Scholar
  3. 3.
    Hancock, M.: Practical Data Mining. CRC Press, Boca Raton (2011). ISBN-13: 978-1439868362Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Monte Hancock
    • 1
    Email author
  • Shakeel Rajwani
    • 2
  • Chloe Lo
    • 2
  • Suraj Sood
    • 2
  • Elijah Kresses
    • 2
  • Cheryl Bleasdale
    • 2
  • Nathan Dunkel
    • 2
  • Elise Do
    • 2
  • Gareth Rees
    • 2
  • Jared Steirs
    • 2
  • Christopher Romero
    • 2
  • Dan Strohschein
    • 3
  • Keith Powell
    • 2
  • Rob French
    • 2
  • Nicholas Fedosenko
    • 2
  • Chris Casimir
    • 2
  1. 1.4DigitalNational Aeronautics and Space AdministrationWashington, DCUSA
  2. 2.Sirius15National Aeronautics and Space AdministrationWashington, DCUSA
  3. 3.National Aeronautics and Space AdministrationWashington, DCUSA

Personalised recommendations