Cognitive-Motor Processes During Arm Reaching Performance Through a Human Body-Machine Interface

  • Rodolphe J. GentiliEmail author
  • Isabelle M. Shuggi
  • Kristen M. King
  • Hyuk Oh
  • Patricia A. Shewokis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9183)


Head controlled based systems represent a class of human body-machine interfaces that employ head motion to control an external device. Overall, the related work has focused on technical developments with limited user performance assessments while generally ignoring the underlying motor learning and cognitive processes. Thus, this study examined, during and after practice, the cognitive-motor states of users when controlling a robotic arm with limited head motion under various control modalities. As a first step, two groups having a different degree of control of the arm directions were considered. The preliminary results revealed that both groups: (i) similarly improved their reaching performance during practice; (ii) provided, after practice, a similar performance generalization while still relying on visual feedback and (iii) exhibited similar cognitive workload. This work can inform the human cognitive-motor processes during learning and performance of arm reaching movements as well as develop rehabilitation systems for disabled individuals.


Cognitive-motor performance Arm reaching movements Motor practice and learning Cognitive workload Human body-machine interface Robotic arm Motor rehabilitation 


  1. 1.
    Pinheiro Jr., C.G., Naves, E.L., Pino, P., Losson, E., Andrade, A.O., Bourhis, G.: Alternative communication systems for people with severe motor disabilities: a survey. Biomed. Eng. Online 10, 31 (2011)CrossRefGoogle Scholar
  2. 2.
    Chin, C.A., Barreto, A.: Enhanced hybrid electromyogram/eye gaze tracking cursor control system for hands-free computer interaction. In: 28th IEEE International Conference of the Engineering in Medicine and Biology Society, pp. 2296–2299. IEEE Press, New York (2006)Google Scholar
  3. 3.
    Chen, Y.L., Kuo, T.S., Chang, W.H., Lai, J.S.: A novel position sensors-controlled computer mouse for the disabled. In: 22th IEEE International Conference of the Engineering in Medicine and Biology Society, pp. 2263–2266. IEEE Press, New York (2000)Google Scholar
  4. 4.
    Evans G., Blenkhorn, P.: A head operated joystick-experience with use. In: CSUN 14th Annual International conference on Technology and Persons with Disabilities, Los Angeles (1999)Google Scholar
  5. 5.
    Evans, D.G., Drew, R., Blenkon, P.: Controlling mouse pointer position using an infrared head-operated joystick. IEEE Trans. Rehabil. Eng. 8(1), 107–117 (2000)CrossRefGoogle Scholar
  6. 6.
    Huo, X., Wang, J., Ghovanloo, M.: A magneto-inductive sensor based wireless tongue-computer interface. IEEE Trans. Neural Syst. Rehabil. 16, 497–503 (2008)CrossRefGoogle Scholar
  7. 7.
    Curtin, A., Ayaz, H., Liu, Y., Shewokis, P.A., Onaral, B.: A P300-based EEG-BCI for spatial navigation control. In: 34th IEEE International Conference of the Engineering in Medicine and Biology Society, pp. 3841–3844. IEEE Press, New York (2012)Google Scholar
  8. 8.
    Williams, M.R., Kirsch, R.F.: Evaluation of head orientation and neck muscle EMG signals as command inputs to a human-computer interface for individuals with high tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 485–496 (2008)CrossRefGoogle Scholar
  9. 9.
    Wolpaw, J.: Brain-computer interfaces as new brain output pathways. J. Physiol. 579(3), 613–619 (2007)CrossRefGoogle Scholar
  10. 10.
    Casadio, M., Ranganathan, R., Mussa-Ivaldi, F.A.: The body-machine interface: a new perspective on an old theme. J. Mot. Behav. 44(6), 419–433 (2012)CrossRefGoogle Scholar
  11. 11.
    Mussa-Ivaldi, F.A., Casadio, M., Danziger, Z.C., Mosier, K.M., Scheidt, R.A.: Sensory motor remapping of space in human-machine interfaces. Prog. Brain Res. 191, 45–64 (2011)CrossRefGoogle Scholar
  12. 12.
    Mussa-Ivaldi, F.A., Casadio, M., Ranganathan, R.: The body-machine interface: a pathway for rehabilitation and assistance in people with movement disorders. Expert Rev. Med. Devices 10(2), 145–147 (2013)CrossRefGoogle Scholar
  13. 13.
    Mandel, C., Rofer, T., Frese, U.: Applying a 3DOF orientation tracker as a human-robot interface for autonomous wheelchairs. In: 10th IEEE International Conference on Rehabilitation Robotics, pp. 52–59. IEEE Press, New York (2007)Google Scholar
  14. 14.
    Mandel, C., Frese, U., Röfer, T.: Design improvements for proportional control of autonomous wheelchairs via 3DOF orientation tracker. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 1052–1059. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    LoPresti, E.F., Brienza, D.M., Angelo, J.: Head-operated computer controls: effect of control method on performance for subjects with and without disability. Interact. Comput. 14, 359–377 (2002)CrossRefGoogle Scholar
  16. 16.
    Card, S.K., MacKinlay, J.D., Robertson, G.G.: A morphological analysis of the design. ACM Trans. Inf. Syst. 9, 99–122 (1991)CrossRefGoogle Scholar
  17. 17.
    Abascal, J.: Users with disabilities: maximum control with minimum effort. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2008. LNCS, vol. 5098, pp. 449–456. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Miller, M.W., Rietschel, J.C., McDonald, C.G., Hatfield, B.D.: A novel approach to the physiological measurement of mental workload. Int. J. Psychophysiol. 80(1), 75–78 (2011)CrossRefGoogle Scholar
  19. 19.
    Rietschel, J.C., Miller, M.W., Gentili, R.J., Goodman, R.N., McDonald, C.G., Hatfield, B.D.: Cerebral-cortical networking and activation increase as a function of cognitive-motor task difficulty. Biol. Psychol. 90(2), 127–133 (2012)CrossRefGoogle Scholar
  20. 20.
    Rietschel, J.C., McDonald, C.G., Goodman, R.N., Miller, M.W., Jones-Lush, L.M., Wittenberg, G.F., Hatfield, B.D.: Psychophysiological support of increasing attentional reserve during the development of a motor skill. Biol. Psychol. 103, 349–356 (2014)CrossRefGoogle Scholar
  21. 21.
    Betke, M., Gips, J., Fleming, P.: the camera mouse: visual tracking of body features to provide computer access for people with severe disabilities. IEEE Trans. Neural Syst. Rehabil. Eng. 10(1), 1–10 (2002)CrossRefGoogle Scholar
  22. 22.
    Cook, A.M., Dobbs, B.M., Warren, S., McKeever, R.: Measuring target acquisition utilizing Madentecs Tracker system in individuals with Cerebral Palsy. Technol. Disabil. 17, 155–163 (2005)Google Scholar
  23. 23.
    LoPresti, E.F., Brienza, D.M., Angelo, J., Gilbertson, L.: Neck range of motion and use of computer head controls. J. Rehabil. Res. Dev. 40(3), 199–211 (2003)Google Scholar
  24. 24.
    LoPresti, E.F., Brienza, D.M.: Adaptive software for head-operated computer controls. IEEE Trans. Neural Syst. Rehabil. Eng. 12(1), 102–111 (2004)CrossRefGoogle Scholar
  25. 25.
    Radwin, R.G., Vanderheiden, G.C., Lin, M.: A method for evaluating head-controlled computer input devices using Fitts Law. Hum. Factors 32(4), 423–438 (1990)Google Scholar
  26. 26.
    Takami, O., Ire, N., Kang, C., Ishimatu, T., Ochiai T.: Computer interface to use head movement for handicapped people. In: IEEE TENCON Digital Signal Processing Applications, pp. 468–472. IEEE Press New York (1996)Google Scholar
  27. 27.
    Bates, R., Istance, H.O.: Why are eyemice unpopular? a detailed comparison of head and eye controlled assistive technology pointing devices. Univ. Access Inf. Soc. 2, 80–290 (2003)CrossRefGoogle Scholar
  28. 28.
    De Silva, G.C., Lyons, M.J., Kawato, S., Tetsutani, N.: Human factors evaluation of a vision-based facial gesture interface. In: Conference on Computer Vision and Pattern Recognition Workshop, pp. 52–59. IEEE Press New York (2003)Google Scholar
  29. 29.
    Javanovic, R., MacKenzie, I.S.: Markermouse: mouse cursor control using a head-mounted marker. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2010, Part II. LNCS, vol. 6180, pp. 49–56. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Pereira, C.A., Neto, B.R., Reynaldo, A.C., Luzo, M.C., Oliveira, R.P.: Development and evaluation of a head-controlled human-computer interface with mouse-like functions for physically disabled users. Clin. (Sao Paulo) 64(10), 975–981 (2009)CrossRefGoogle Scholar
  31. 31.
    Schaab, J.A., Radwin, R.G., Vanderheiden, G.C., Hansen, P.K.: A comparison of two control-display gain measures for head-controlled computer input devices. Hum. Factors 38(3), 390–403 (1996)CrossRefGoogle Scholar
  32. 32.
    Lin, M., Radwin, R.G., Vanderheiden, G.C.: Gain effects on performance using a head-controlled computer input device. Ergonomics 35(2), 159–175 (1992)CrossRefGoogle Scholar
  33. 33.
    Jagacinski, R.J., Monk, D.L.: Fitts law in two dimensions with hand and head movements. J. Mot. Behav. 17, 77–95 (1985)CrossRefGoogle Scholar
  34. 34.
    Gentili, R.J., Rietschel, J.C., Jaquess, K.J., Lo, L.-C., Prevost, C.M., Miller, M.W., Mohler, J.M., Oh, H., Tan, Y.Y., Hatfield, B.D.: Brain biomarkers based assessment of cognitive workload in pilots under various task demands. In: 36th IEEE International Conference of the Engineering in Medicine and Biology Society, pp. 5860–5863. IEEE Press, New York (2014)Google Scholar
  35. 35.
    Gentili, R.J., Oh, H., Shuggi, I.M., Goodman, R.N., Rietschel, J.C., Hatfield, B.D., Reggia, J.A.: Human-robotic collaborative intelligent control for reaching performance. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2013. LNCS, vol. 8027, pp. 666–675. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  36. 36.
    Deeny, S., Chicoine, C., Hargrove, L., Parrish, T., Jayaraman, A., Onaral, B.: A simple ERP method for quantitative analysis of cognitive workload in myoelectric prosthesis control and human-machine interaction. PLoS One 17(9(11)), e112091 (2014)CrossRefGoogle Scholar
  37. 37.
    Ayaz, H., Shewokis, P.A., Bunce, S., Izzetoglu, K., Willems, B., Onaral, B.: Optical brain monitoring for operator training and mental workload assessment. Neuroimage 59(1), 36–47 (2012)CrossRefGoogle Scholar
  38. 38.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): results of empirical and theoretical research. Hum. Ment. Workload 1, 139–183 (1988)CrossRefGoogle Scholar
  39. 39.
    Kitazawa, S., Goto, T., Urushihara, Y.: Quantitative evaluation of reaching movements in cats with and without cerebellar lesions using normalized integral of jerk. In: Mano, N., Hamada, I., DeLong, M.R. (eds.) Role of the cerebellum and basal ganglia in voluntary movement, pp. 11–19. Elsevier, Amsterdam (1993)Google Scholar
  40. 40.
    Gentili, R.J., Bradberry, T.J., Oh, H., Costanzo, M.E., Kerick, S.E., Contreras-Vidal, J.L., Hatfield, B.D.: Evolution of cerebral cortico-cortical communication during visuomotor adaptation to a cognitive-motor executive challenge. Biol. Psychol. 105C, 51–65 (2014)Google Scholar
  41. 41.
    Guadagnoli, M.A., Lee, T.D.: Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J. Mot. Behav. 36(2), 212–224 (2004)CrossRefGoogle Scholar
  42. 42.
    Sanli, E.A., Patterson, J.T., Bray, S.R., Lee, T.D.: Understanding self-controlled motor learning protocols through the self-determination theory. Front. Psychol. 11(3), 611 (2013)Google Scholar
  43. 43.
    Balakrishnan, R., Hinckley, K.: The role of kinesthetic reference frames in two-handed input performance. In: 12th Annual ACM Symposium on User Interface Software and Technology, pp. 171–178 (1999)Google Scholar
  44. 44.
    Hinckley, K., Jacob, R.J.K., Ware, C.: Input/ouput devices and interaction techniques. In: Tucker, A.B. (ed.) Computer Science Handbook, 2nd edn. CRC Press, Boca Raton (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rodolphe J. Gentili
    • 1
    • 2
    • 3
    Email author
  • Isabelle M. Shuggi
    • 1
  • Kristen M. King
    • 1
  • Hyuk Oh
    • 1
    • 2
  • Patricia A. Shewokis
    • 4
    • 5
    • 6
  1. 1.Department of Kinesiology, Cognitive Motor Neuroscience LaboratoryUniversity of MarylandCollege ParkUSA
  2. 2.Neuroscience and Cognitive Science ProgramUniversity of MarylandCollege ParkUSA
  3. 3.Maryland Robotics CenterUniversity of MarylandCollege ParkUSA
  4. 4.School of Biomedical Engineering, Science, and Health SystemsDrexel UniversityPhiladelphiaUSA
  5. 5.Nutrition Sciences Department, College of Nursing and Health ProfessionsDrexel UniversityPhiladelphiaUSA
  6. 6.College of Medicine, Department of Surgery, Surgical EducationDrexel UniversityPhiladelphiaUSA

Personalised recommendations