Advertisement

Improving BCI Usability as HCI in Ambient Assisted Living System Control

  • Niccolò MoraEmail author
  • Ilaria De Munari
  • Paolo Ciampolini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9183)

Abstract

Brain Computer Interface (BCI) technology is an alternative/augmentative communication channel, based on the interpretation of the user’s brain activity, who can then interact with the environment without relying on neuromuscular pathways. Such technologies can act as alternative HCI devices towards AAL (Ambient Assisted Living) systems, thus opening their services to people for whom interacting with conventional interfaces could be troublesome, or even not viable. We present here a complete solution for BCI-enabled home automation. The implemented solution is, nonetheless, more general in the approach, since both the realized hardware module and the software infrastructure can handle general bio-potentials. We demonstrate the effectiveness of the solution by restricting the focus to a SSVEP-based, self-paced BCI, featuring calibration-less operation and a subject-independent, “plug&play” approach. The hardware module will be validated and compared against a commercial EEG device; at the same time, the signal processing chain will be presented, introducing a novel method for improving accuracy and immunity to false positives. The results achieved, especially in terms of false positive rate containment (0.26 min−1) significantly improve over the literature.

Keywords

Brain computer interface (BCI) Steady state visual evoked potential (SSVEP) Self-paced BCI Subject-independent BCI 

References

  1. 1.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  2. 2.
    Mora, N., Bianchi, V., De Munari, I., Ciampolini, P.: A BCI platform supporting AAL applications. In: Stephanidis, C., Antona, M. (eds.) UAHCI 2014, Part I. LNCS, vol. 8513, pp. 515–526. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Millan, R.J., Mourino, J.: Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project. Trans. Neural Syst. Rehabil. Eng. 11(2), 159–161 (2003)CrossRefGoogle Scholar
  4. 4.
    Mora, N., Bianchi, V., De Munari, I., Ciampolini, P.: Controlling AAL environments through BCI. In: IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), 2014, pp. 1–6, 10-12 September 2014Google Scholar
  5. 5.
    Mora, N., Bianchi, V., De Munari, I. Ciampolini, P.: A low cost brain computer interface platform for AAL applications. In: AAATE 2013 Conference Proceedings. Vilamoura, Portugal, 19–22 September 2013Google Scholar
  6. 6.
    Grossi, F., Bianchi, V., Matrella, G., De Munari, I., Ciampolini, P.: An assistive home automation and monitoring system. In: ICCE 2008. Digest of Technical Papers, pp. 1–2 (2008)Google Scholar
  7. 7.
    Cecotti, H.: A self-paced and calibration-less SSVEP-based brain-computer interface speller. IEEE Trans. Neural Syst. Rehabil. Eng. 18(2), 127–133 (2010)CrossRefGoogle Scholar
  8. 8.
    Pfurtscheller, G., Brunner, C., Schlögl, A., Lopes da Silva, F.H.: Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31(1), 153–159 (2006)CrossRefGoogle Scholar
  9. 9.
    Volosyak, I.: SSVEP-based Bremen-BCI interface - boosting information transfer rates. J. Neural Eng. 8(3), 1–11 (2011)CrossRefGoogle Scholar
  10. 10.
    Garcia-Molina, G., Zhu, D.: Optimal spatial filtering for the steady state visual evoked potential: BCI application. In: 5th International IEEE/EMBS Conference on Neural Engineering, pp. 156−160 (2011)Google Scholar
  11. 11.
    Lin, Z., Zhang, C., Wu, W., Gao, X.: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans. Biomed. Eng. 54, 1172–1176 (2007)CrossRefGoogle Scholar
  12. 12.
    Mora, N., Bianchi, V., De Munari, I., Ciampolini, P.: Simple and efficient methods for steady state visual evoked potential detection in BCI embedded system. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2044–2048 (2014)Google Scholar
  13. 13.
    Mora, N., De Munari, I., Ciampolini, P.: Subject-independent, SSVEP-based BCI: trading off among accuracy, responsiveness and complexity. In: 7th International IEEE/EMBS Conference on Neural Engineering (NER) (2015)Google Scholar
  14. 14.
    Millan, R.J., Mourino, J.: Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project. Trans. Neural Syst. Rehabil. Eng. 11(2), 159–161 (2003)CrossRefGoogle Scholar
  15. 15.
    Pfurtscheller, G., Solis-Escalante, T., Ortner, R., Linortner, P., Muller-Putz, G.R.: Self-paced operation of an SSVEP-based orthosis with and without an imagery-based “brain switch:” A feasibility study towards a hybrid BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 18(4), 409–414 (2010)CrossRefGoogle Scholar
  16. 16.
    Pan, J., Li, Y., Zhang, R., Zhenghui, G., Li, F.: Discrimination between control and idle states in asynchronous SSVEP-based brain switches: a pseudo-key-based approach. IEEE Trans. Neural Syst. Rehabil. Eng. 21(3), 435–443 (2013)CrossRefGoogle Scholar
  17. 17.
    Mueller-Putz, G.R., Breitwieser, C., Cincotti, F., Leeb, R., Schreuder, M., Leotta, F., Tavella, M., Bianchi, L., Kreilinger, A., Ramsay, A. Rohm, M. Sagebaum, M., Tonin, L., Neuper, C., Millán, R.J.: Tools for brain-computer interaction: a general concept for a hybrid BCI (hBCI). Front. Neuroinform. 5(30) (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Niccolò Mora
    • 1
    Email author
  • Ilaria De Munari
    • 1
  • Paolo Ciampolini
    • 1
  1. 1.Information Engineering DepartmentUniversity of ParmaParmaItaly

Personalised recommendations