Investigation of Functional Near Infrared Spectroscopy in Evaluation of Pilot Expertise Acquisition

  • Gabriela Hernandez-MezaEmail author
  • Lauren Slason
  • Hasan Ayaz
  • Patrick Craven
  • Kevin Oden
  • Kurtulus Izzetoglu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9183)


Functional Near-Infrared (fNIR) spectroscopy is an optical brain imaging technology that enables assessment of brain activity through the intact skull in human subjects. fNIR systems developed during the last decade allow for a rapid, non-invasive method of measuring the brain activity of a subject while conducting tasks in realistic environments. This paper examines the hemodynamic changes associated with expertise development during C-130j simulated flying missions.


Near-infrared spectroscopy Optical brain imaging fNIR Human performance assessment Pilot training 



This investigation was in part funded by Lockheed Martin (University Research Agreement S14-009). The views, opinions, and/or findings contained in this article are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the funding agency.


  1. 1.
    Cope, M., Delpy, D.T.: System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med. Biol. Eng. Comput. 26, 289–294 (1988)CrossRefGoogle Scholar
  2. 2.
    Kruggel, F., von Cramon, D.Y.: Temporal properties of the hemodynamic response in functional MRI. Hum. Brain Mapp. 8, 259–271 (1999)CrossRefGoogle Scholar
  3. 3.
    Magistretti, P.J.: Cellular bases of functional brain imaging: insights from neuron-glia metabolic coupling. Brain Res. 886, 108–112 (2000)CrossRefGoogle Scholar
  4. 4.
    Ames, A.: CNS energy metabolism as related to function. Brain Res. Rev. 34, 42–68 (2000)CrossRefGoogle Scholar
  5. 5.
    Cope, M.: The application of near infrared spectroscopy to non-invasive monitoring of cerebral oxygenation in the newborn infant. vol. Ph.D. University of London (1991) Google Scholar
  6. 6.
    Jobsis, F.F.: Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267 (1977)CrossRefGoogle Scholar
  7. 7.
    Chance, B., Zhuang, Z., Unah, C., Alter, C., Lipton, L.: Cognition-Activated Low-Frequency Modulation of Light-Absorption in Human Brain. Proc. Natl. Acad. Sci. USA 90, 3770–3774 (1993)CrossRefGoogle Scholar
  8. 8.
    Gratton, G., Corballis, P.M., Cho, E., Fabiani, M., Hood, D.C.: Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation. Psychophysiology 32, 505–509 (1995)CrossRefGoogle Scholar
  9. 9.
    Hoshi, Y., Tamura, M.: Dynamic multichannel near-infrared optical imaging of human brain activity. J. Appl. Physiol. 75, 1842–1846 (1993)Google Scholar
  10. 10.
    Kato, T., Kamei, A., Takashima, S., Ozaki, T.: Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy. J. Cereb. Blood Flow Metab. 13, 516–520 (1993)CrossRefGoogle Scholar
  11. 11.
    Villringer, A., Planck, J., Hock, C., Schleinkofer, L., Dirnagl, U.: Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci. Lett. 154, 101–104 (1993)CrossRefGoogle Scholar
  12. 12.
    Chance, B., Anday, E., Nioka, S., Zhou, S., Hong, L., Worden, K., Li, C., Murray, T., Ovetsky, Y., Pidikiti, D., Thomas, R.: A novel method for fast imaging of brain function, non-invasively, with light. Opt. Express 2, 411–423 (1998)CrossRefGoogle Scholar
  13. 13.
    Ayaz, H., Izzetoglu, M., Platek, S.M., Bunce, S., Izzetoglu, K., Pourrezaei, K., Onaral, B.: Registering fNIR data to brain surface image using MRI templates. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 2671–2674 (2006)CrossRefGoogle Scholar
  14. 14.
    Milton, J.G., Small, S.S., Solodkin, A.: On the road to automatic: dynamic aspects in the development of expertise. J. Clin. Neurophysiol. 21, 134–143 (2004)CrossRefGoogle Scholar
  15. 15.
    Chance, B., Zhuang, Z., UnAh, Z., Alter, C., Lipton, L.: Cognition-activated low-frequency modulation of light absorption in human brain. PNAS 90, 3770–3774 (1993)CrossRefGoogle Scholar
  16. 16.
    Villringer, A., Chance, B.: Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 20, 435–442 (1997)CrossRefGoogle Scholar
  17. 17.
    Hoshi, Y., Onoe, H., Watanabe, Y., Andersson, J., Bergstrom, M., Lilja, A., Langstom, B., Tamura, M.: Non-synchronous behavior of neuronal activity, oxidative metabolism and blood supply during mental tasks in man. Neurosci. Lett. 172, 129–133 (1994)CrossRefGoogle Scholar
  18. 18.
    Villringer, A., Planck, J., Hock, C., Schleinkofer, L., Dirnagl, U.: Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci. Lett. 154, 101–104 (1993)CrossRefGoogle Scholar
  19. 19.
    Strangman, G., Boas, D.A., Sutton, J.P.: Non-invasive neuroimaging using near-infrared light. Biol. Psychiatry 52(7), 679–693 (2002)CrossRefGoogle Scholar
  20. 20.
    Gratton, E., Toronov, V., Wolf, U., Wolf, M., Webb, A.: Measurement of brain activity by near-infrared light. J. Biomed. Opt. 10(1), 011008 (2005)CrossRefGoogle Scholar
  21. 21.
    Hoshi, Y.: Functional near-infrared optical imaging: utility and limitations in human brain mapping. Psychophysiology 40, 511–520 (2003)CrossRefGoogle Scholar
  22. 22.
    Izzetoglu, M., Izzetoglu, K., Bunce, S., Ayaz, H., Deveraj, A., Onaral, B., Pourrezaei, K.: Functional Near-Infrared Neuroimaging. IEEE Trans. Neural Syst. Rehabil. Eng. 13(2), 153–159 (2005)CrossRefGoogle Scholar
  23. 23.
    Buxton, R.B., Uludag, K., Dubowitz, D.J., Liu, T.T.: Modeling the hemodynamic response to brain activation. NeuroImage 23(Suppl. 1), S220–S233 (2004)CrossRefGoogle Scholar
  24. 24.
    Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P.A., McKendrick, R., Parasuraman, R.: Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: Empirical examples and a technological development. Front. Hum. Neurosci. 7, 1–13 (2013). doi: 10.3389/fnhum.2013.00871 CrossRefGoogle Scholar
  25. 25.
    Ayaz, H., Bunce, S., Shewokis, P., Izzetoglu, K., Willems, B., Onaral, B.: Using brain activity to predict task performance and operator efficiency. In: Hussain, A., Liu, D., Zhang, H., Wang, Z. (eds.) BICS 2012. LNCS, vol. 7366, pp. 147–155. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Ayaz, H., Cakir, M. P., Izzetoglu, K., Curtin, A., Shewokis, P. A., Bunce, S., Onaral, B.: Monitoring expertise development during simulated UAV piloting tasks using optical brain imaging. Paper presented at the IEEE Aerospace Conference, BigSky, MN, USA (2012)Google Scholar
  27. 27.
    Ayaz, H., Shewokis, P.A., Bunce, S., Izzetoglu, K., Willems, B., Onaral, B.: Optical brain monitoring for operator training and mental workload assessment. NeuroImage 59(1), 36–47 (2012)CrossRefGoogle Scholar
  28. 28.
    Harrison, J., Izzetoglu, K., Ayaz, H., Willems, B., Hah, S., Ahlstrom, U., Onaral, B.: Cognitive workload and learning assessment during the implementation of a next-generation air traffic control technology using functional near-infrared spectroscopy. IEEE Trans. Hum.-Mach. Syst. 44(4), 429–440 (2014). doi: 10.1109/THMS.2014.2319822 CrossRefGoogle Scholar
  29. 29.
    Izzetoglu, K., Ayaz, H., Hing, J., Shewokis, P., Bunce, S., Oh, P., Onaral, B.: UAV Operators Workload Assessment by Optical Brain Imaging Technology (fNIR). In: Valavanis, K.P., Vachtsevanos, G.J. (eds.) Handbook of Unmanned Aerial Vehicles, pp. 2475–2500. Springer, Netherlands (2014)Google Scholar
  30. 30.
    Izzetoglu, K., Ayaz, H., Menda, J., Izzetoglu, M., Merzagora, A., Shewokis, P.A., Pourrezaei, K., Onaral, B.: Applications of functional near infrared imaging: case study on UAV ground controller. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) FAC 2011. LNCS, vol. 6780, pp. 608–617. Springer, Heidelberg (2011)Google Scholar
  31. 31.
    Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995)MathSciNetGoogle Scholar
  32. 32.
    Singh, A.K., Dan, I.: Exploring the false discovery rate in multichannel NIRS. NeuroImage 33, 542–549 (2006)CrossRefGoogle Scholar
  33. 33.
    Strangman, G., Boas, D.A., Sutton, J.P.: Non-invasive neuroimaging using near-infrared light. Biol. Psychiatry 52, 679–693 (2002)CrossRefGoogle Scholar
  34. 34.
    Lynch, J., Aughwane, P., Hammond, T.: Video games and surgical ability: a literature review. J. Surg. Educ. 67, 184–189 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gabriela Hernandez-Meza
    • 1
    Email author
  • Lauren Slason
    • 2
  • Hasan Ayaz
    • 1
  • Patrick Craven
    • 2
  • Kevin Oden
    • 3
  • Kurtulus Izzetoglu
    • 1
  1. 1.School of Biomedical Engineering, Science & Health SystemsDrexel UniversityPhiladelphiaUSA
  2. 2.Applied Informatics Group, CCIDrexel UniversityPhiladelphiaUSA
  3. 3.Lockheed Martin CorporationOrlandoUSA

Personalised recommendations