Advertisement

Discrimination in Good-Trained Brain States for Brain Computer Interface

  • Mariko FunadaEmail author
  • Tadashi Funada
  • Yoshihide Igarashi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9183)

Abstract

BCI (brain computer interface) is particularly important for HCI. Some of recent results concerning BCI made a great contribution to the development of the HCI research area. In this paper we define “good-trained brain states”, and then propose a method for discriminating good-trained brain states from other states. We believe that repetitious training might be effective to human brains. Human brain reactions can be quantified by ERPs (event related potentials). We analyze the data of ERPs reflecting the brain reactions, and then discuss the effect of repetitious training to the brain states.

Keywords

Good-trained brain states BCI ERP EEG Individual difference 

References

  1. 1.
    Carlson, N.R.: Physiology of Behavior, pp. 27–100. Pearson Education Limited, Edinburgh (2014)Google Scholar
  2. 2.
    Funada, M., Igarashi, Y., Funada, T., Shibukawa, M., Igarashi, Y., Ninomija, S.P.: Models of event related potentials using the sum of normal distributions and their evaluation by simulations. In: The 16th IASTED International Conference on Applied Simulation and Modelling, Palma De Mallorca, pp. 581–159 (2007)Google Scholar
  3. 3.
    Funada, M., Shibukawa, M., Igarashi, Y., Funada, T., Ninomija, S.P.: Some characterizations of event-related potentials by reconstructing the distribution of the potentials. Jpn. J. Hum. Factors 46(2), 144–156 (2010)Google Scholar
  4. 4.
    Funada, M., Igarashi, Y., Funada, T., Shibukawa, M.: A model reflecting the changes of ERPs during iterative learning of calculations. In: The Second IASTED Asian Conference on Modelling, Identification and Control, Phuket, pp. 769–086 (2012)Google Scholar
  5. 5.
    Funada, M., Funada, T., Shibukawa, M., Akahor, K.: Quantification and analysis of efficiency of iterative learning by using event related potentials. Educ. Technol. Res. 35, 103–113 (2012)Google Scholar
  6. 6.
    Funada, M., Funada, T., Shibukawa, M.: ERPs composited by multi-data selecting method. In: Proceedings of the 42nd Annual Meeting of the Behaviormetric Society of Japan, pp. 300–301 (2014)Google Scholar
  7. 7.
    Härdle, W., Simar, L.: Applied Multivariate Statistical Analysis, 2nd edn, pp. 215–247. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  8. 8.
    Luck, S.J.: An Introduction to the Event-Related Potential Technique. The MIT Press, Cambridge (2005)Google Scholar
  9. 9.
    Luis, F.N.A., Jaime, G.G.: Brain computer interface, a review. Sensors (Basel) 12(2), 1211–1279 (2012)Google Scholar
  10. 10.
    Minami, S.: Data Processing for Scientific Instrumentation, pp. 84–99. CQ Shuppansha, Tokyo (1992)Google Scholar
  11. 11.
    Motiya, E.: Operations Research, pp. 55–66. Nihon Rikou Syuppankai, Tokyo (1988)Google Scholar
  12. 12.
    Nittono, H.: Guidebook Event-Related Potential for Psychology. Ojishobou, Kyoto (2005)Google Scholar
  13. 13.
    Picton, T.W., Bentin, S., Berg, P., Conchin, E., Hillyard, S.A., Johnson Jr., R., Miller, G.A., Ritter, W., Ruchkin, D.S., Rugg, M.D., Taylor, M.J.: Guideline for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37, 128–152 (2000)CrossRefGoogle Scholar
  14. 14.
    Tsuru, N.: Clinical Electroencephalography and Analysis of Electroencephalography. Shinko Igaku Shuppansha, Tokyo (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mariko Funada
    • 1
    Email author
  • Tadashi Funada
    • 2
  • Yoshihide Igarashi
    • 3
  1. 1.Department of Business AdministrationHakuoh UniversityOyamaJapan
  2. 2.College of ScienceRikkyo UniversityToshima-kuJapan
  3. 3.Professor EmeritusGunma UniversityKiryuJapan

Personalised recommendations