The Neurobiology of Executive Function Under Stress and Optimization of Performance

  • Ann M. RasmussonEmail author
  • John M. Irvine
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9183)


Much basic and clinical research to date has investigated predictors of stress resilience and vulnerability, indicating, for example, that broad impact neurobiological factors, such as neuropeptide Y (NPY) and neuroactive steroids, are mechanistically related to short term stress resilience, as well as longterm patterns of stress-related medical and neuropsychiatric comorbidities. The problem is that we lack good methods for identifying predictors of stress resilience or vulnerability at an individual level, so that human performance and therapeutic interventions can be targeted precisely to underlying points of malfunction for maximum effectiveness. We thus propose modified experimental designs that capitalize on our growing capacities to query and analyze multimodal data across the translational levels of human biology and behavior. We propose that use of these methods in studies of individuals participating in intense military training or returning from deployment could enable better prediction of performance, and development of more effective personalized interventions aimed at optimizing and maintaining stress resilience over time.


Resilience PTSD Translational neuroscience Neuropeptide Y Allopregnanolone Neuroactive steroids Predictive algorithms Functional data analysis Non-linear modeling Machine learning 


  1. 1.
    Rasmusson, A.M., Schnurr, P., Zukowska, Z., Scioli, E., Forman, D.E.: Adaptation to extreme stress: PTSD, NPY, and metabolic syndrome. Exp. Biol. Med. 235, 1150–1156 (2010)CrossRefGoogle Scholar
  2. 2.
    Rasmusson, A.M., Shalev, A.: Integrating the neuroendocrinology, neurochemistry, and neuroimmunology of PTSD to date and the challenges ahead. In: Friedman, M., Keane, T., Resick, P. (eds.) Handbook of PTSD, 2nd edn. Guilford Publications Inc, New York (2014)Google Scholar
  3. 3.
    Scioli-Salter, E.R., Otis, J.D., Forman, D.E., Gregor, K., Valovski, I., Rasmusson, A.M.: The Shared Neuroanatomy and Neurophysiology of Comorbid Chronic Pain & PTSD: Therapeutic Implications (PAP 12 August 2014, in press)Google Scholar
  4. 4.
    Pitman, R.K., Rasmusson, A.M., Koenen, K.C., Shin, L.M., Orr, S.P., Gilbertson, M.W., Milad, M., Liberzon, I.: Biology of posttraumatic stress disorder. Nat. Rev. Neurosci. 13, 769–787 (2012)CrossRefGoogle Scholar
  5. 5.
    Morgan III, C.A., Rasmusson, A.M., Wang, S., Hoyt, G., Hauger, R.L., Hazlett, G.: Neuropeptide-Y, cortisol and subjective distress in humans exposed to acute stress: replication and extension of previous report. Biol. Psychiatry 52, 136–142 (2002)CrossRefGoogle Scholar
  6. 6.
    Morgan III, C.A., Southwick, S., Hazlett, G., Rasmusson, A., Hoyt, G., Zimolo, Z., Charney, D.: Relationships among plamsa dehydroepiandrosterone sulfate and cortisol levels, symptoms of dissociation, and objective performance in humans exposed to acute stress. Arch. Gen. Psychiatry 61, 819–825 (2004)CrossRefGoogle Scholar
  7. 7.
    Morgan III, C.A., Rasmusson, A., Pietrzak, R.H., Coric, V., Southwick, S.M.: Relationships among plasma dehydroepiandrosterone and dehydroepiandrosterone sulfate, cortisol, symptoms of dissociation, and objective performance in humans exposed to underwater navigation stress. Biol. Psychiatry 66(4), 334–340 (2009)CrossRefGoogle Scholar
  8. 8.
    Morgan 3rd, C.A., Hazlett, G., Dial-Ward, M., Southwick, S.M.: Baseline dissociation and prospective success in special forces assessment and selection. J. Spec. Oper. Med. 9, 87–92 (2009). (Reprint of Psychiatry, pp. 53–58, 5 July 2008)Google Scholar
  9. 9.
    Southwick, S.M., Krystal, J.H., Bremner, J.D., Morgan 3rd, C.A., Nicolaou, A.L., Nagy, L.M., Charney, D.S.: Noradrenergic and serotonergic function in posttraumatic stress disorder. Arch. Gen. Psychiatry 54, 749–758 (1997)CrossRefGoogle Scholar
  10. 10.
    Bremner, J.D., Krystal, J.H., Putnam, F.W., Southwick, S.M., Marmar, C., Charney, D.S., Mazure, C.M.: Measurement of dissociative states with the clinician-administered dissociative states scale (CADSS). J. Traumatic Stress 11, 125–136 (1998)CrossRefGoogle Scholar
  11. 11.
    Robich, M.P., Matyal, R., Chu, L.M., Feng, J., Xu, S.-H., Laham, R.J., Hess, P.E., Bianchi, C., Sellke, F.W.: Effects of neuropeptide Y on collateral development in a swine model of chronic myocardial ischemia. J. Mol. Cell. Cardiol. 49, 1022–1030 (2010)CrossRefGoogle Scholar
  12. 12.
    Pons, J., Kitlinska, J., Hong, J., Lee, E.W., Zukowska, Z.: Mitogenic actions of neuropeptide Y in vascular smooth muscle cells: synergetic interactions with the beta-adrenergic system. Can. J. Physiol. Pharmacol. 81, 177–185 (2003)CrossRefGoogle Scholar
  13. 13.
    Kuo, L.E., Kitlinska, J., Tilan, J., Lijun, L., Baker, S., Johnson, M., Lee, E., Burnett, M.S., Fricke, S., Kvetnansky, R., Herzog, H., Zukowska, Z.: Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat. Med. 13, 803–811 (2007)CrossRefGoogle Scholar
  14. 14.
    Held, K., Antonijevic, I., Murck, H., Kuenzel, H., Steiger, A.: Neuropeptide Y (NPY) shortens sleep latency but does not suppress ACTH and cortisol in depressed patients and normal controls. Psychoneuroendocrinology 31, 100–1007 (2006)CrossRefGoogle Scholar
  15. 15.
    Xie, L., Kang, H., Xu, Q., Chen, M.J., Liao, Y., Thiyagarajan, M., O’Donnell, J., Christensen, D.J., Nicholson, C., Iliff, J.J., Takano, T., Deane, R., Nedergaard, M.: Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013)CrossRefGoogle Scholar
  16. 16.
    Howell, O.W., Silva, S., Scharfman, H.E., Sosunov, A.A., Zaben, M., Shatya, A., Gray, W.P.: Neuropeptide Y is important for basal and seizure-induced precursor cell proliferation in the hippocampus. Neurobiol. Dis. 26, 174–188 (2007)CrossRefGoogle Scholar
  17. 17.
    Brown, C.M., Coscina, D.V., Fletcher, P.J.: The rewarding properties of neuropeptide Y in perifornical hypothalamus vs nucleus accumbens. Peptides 21, 1279–1287 (2000)CrossRefGoogle Scholar
  18. 18.
    Arnsten, A.F.: Stress signaling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 10, 410–422 (2009)CrossRefGoogle Scholar
  19. 19.
    Goldstein, L.E., Rasmusson, A.M., Bunney, B.S., Roth, R.H.: Role of the amygdala in the coordination of behavioral, neuroendocrine and prefrontal cortical monoamine responses to psychological stress in the rat. J. Neurosci. 16, 4787–4798 (1996)Google Scholar
  20. 20.
    Colmers, W., Bleakman, D.: Effects of neuropeptide Y on the electrical properties of neurons. Trends Neurosci. 17, 373–379 (1994)CrossRefGoogle Scholar
  21. 21.
    Zukowska-Grojec, Z.: Neuropeptide Y: a novel sympathetic stress hormone and more. Ann. N.Y. Acad. Sci. 771, 219–233 (1995)CrossRefGoogle Scholar
  22. 22.
    Sah, R., Ekhator, N.N., Strawn, J.R., Sallee, F.R., Baker, D.G., Horn, P.S., Geracioti Jr., T.D.: Low cerebrospinal fluid neuropeptide Y concentrations in posttraumatic stress disorder. Biol. Psychiatry 66, 705–707 (2009)CrossRefGoogle Scholar
  23. 23.
    Rasmusson, A.M., Hauger, R.L., Morgan III, C.A., Bremner, J.D., Charney, D.S., Southwick, S.M.: Low baseline and yohimbine-stimulated plasma neuropeptide Y (NPY) levels in combat-related PTSD. Biol. Psychiatry 47, 526–539 (2000)CrossRefGoogle Scholar
  24. 24.
    Yehuda, R., Brand, S., Yank, R.K.: Plasma neuropeptide Y concentrations in combat exposed veterans: relationship to trauma exposure, recovery from PTSD and coping. Biol. Psychiatry 59, 660–663 (2005)CrossRefGoogle Scholar
  25. 25.
    Corder, R., Castagne, V., Rivet, J.M., Mormede, P., Gaillard, R.C.: Central and peripheral effects of repeated stress and high NaCl diet on neuropeptide Y. Physiol. Behav. 52, 205–210 (1992)CrossRefGoogle Scholar
  26. 26.
    Morgan III, C.A., Rasmusson, A.M., Winters, B., Hauger, R.L., Morgan, J., Hazlett, G., Southwick, S.: Trauma exposure rather than posttraumatic stress disorder is associated with reduced baseline plasma neuropeptide-Y levels. Biol. Psychiatry 54, 1087–1091 (2003)CrossRefGoogle Scholar
  27. 27.
    Neumeister, A., Charney, D.S., Belfer, I., Geraci, M., Holmes, C., Sharabi, Y., Alim, T., Bonne, O., Luckenbaugh, D.A., Manji, H., Goldman, D., Goldstein, D.S.: Sympathoneural and adrenomedullary functional effects of alpha2C-adrenoreceptor gene polymorphism in healthy humans. Pharmacogenet. Genomics 15, 143–149 (2005)CrossRefGoogle Scholar
  28. 28.
    Kallio, J., Pesonen, U., Kaipio, K., Karvonen, M.K., Jaakkola, U., Heinonen, O.J., Uusitupa, M.I., Koulu, M.: Altered intracellular processing and release of neuropeptide Y due to leucine7 to proline7 polymorphism in the signal peptide of pre-proneuropeptide Y in humans. FASEB J. 15, 1242–1244 (2001)Google Scholar
  29. 29.
    Zhou, Z., Zhu, G., Hariri, A.R., Enoch, M.-A., Scott, D., Sinha, R., Virkkunen, M., Mash, D.C., Goldman, D.: Genetic variation in human NPY expression affects stress response and emotion. Nature 452, 997–1001 (2008)CrossRefGoogle Scholar
  30. 30.
    Kapio, K., Kallio, J., Pesonen, U.: Mitochondrial targeting signal in human neuropeptide Y gene. Biochem. Biophys. Res. Commun. 337, 633–640 (2005)CrossRefGoogle Scholar
  31. 31.
    Raskind, M.A., Peskind, E.R., Hoff, D.J., Hart, K.L., Holmes, H.A., Warren, D., McFall, M.E.: A parallel group placebo controlled study of prazosin for trauma nightmares and sleep disturbance in combat veterans with post-traumatic stress disorder. Biol. Psychiatry 61, 928–934 (2007)CrossRefGoogle Scholar
  32. 32.
    Ramson, R., Jurimae, J., Jurimae, T., Maestu, J.: The effect of 4-week training period on plasma neuropeptide Y, leptin and ghrelin responses in male rowers. Eur. J. Appl. Physiol. 112, 1873–1880 (2012)CrossRefGoogle Scholar
  33. 33.
    Puia, G., Mienville, J.M., Matsumoto, K., Takahata, H., Watanabe, H., Costa, E., Guidotti, A.: On the putative physiological role of allopregnanolone on GABA A receptor function. Neuropharmacology 44, 49–55 (2003)CrossRefGoogle Scholar
  34. 34.
    Agis-Balboa, R.C., Pinna, G., Zhubi, A., Maloku, E., Veldic, M., Costa, E., Guidotti, A.: Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 103, 14602–14607 (2006)CrossRefGoogle Scholar
  35. 35.
    Semyanov, A., Walker, M.C., Kullmann, D.M., Silver, R.A.: Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci. 27, 262–269 (2004)CrossRefGoogle Scholar
  36. 36.
    Chhatwal, J.P., Myers, K.M., Ressler, K.J., Davis, M.: Regulation of gephyrin and GABAA receptor binding within the amygdala after fear acquisition and extinction. J. Neurosci. 25, 502–506 (2005)CrossRefGoogle Scholar
  37. 37.
    Purdy, R.H., Morrow, A.L., Moore Jr., P.H., Paul, S.M.: Stress-induced elevations of gamma-aminobutyric acid type a receptor-active steroids in the rat brain. Proc. Natl. Acad. Sci. 88, 4553–4557 (1991)CrossRefGoogle Scholar
  38. 38.
    Barbaccia, M.L., Roscetti, G., Trabucchi, M., Mostallino, M.C., Concas, A., Purdy, R.H., Biggio, G.: Time-dependent changes in rat brain neuroactive steroid concentrations and GABAA receptor function after acute stress. Neuroendocrinology 63, 66–172 (1996)CrossRefGoogle Scholar
  39. 39.
    Rasmusson, A.M., Pinna, G., Paliwal, P., Weisman, D., Gottschalk, C., Charney, D., Krystal, J., Guidotti, A.: Decreased cerebrospinal fluid allopregnanolone levels in women with posttraumatic stress disorder. Biol. Psychiatry 60, 704–713 (2006)CrossRefGoogle Scholar
  40. 40.
    Payne, V.M., Morey, R.A., Hamer, R.M., Tupler, L.A., Calhoun, P.S., Beckham, J.C., Marx, C.M.: Neuroactive steroids are related to psychiatric symptoms in veterans who served in operation enduring freedom/operation Iraqi freedom. In: Annual Meeting of the International Society for Traumatic Stress Studies (2007)Google Scholar
  41. 41.
    Cagetti, E., Pinna, G., Guidotti, A., Baicy, K., Olsen, R.W.: Chronic intermittent ethanol (CIE) administration in rats decreases levels of neurosteroids in hippocampus, accompanied by altered behavioral responses to neurosteroids and memory function. Neuropharmacology 46, 570–579 (2004)CrossRefGoogle Scholar
  42. 42.
    Pibiri, F., Nelson, M., Guidotti, A., Costa, E., Pinna, G.: Decreased allopregnanolone content during social isolation enhances contextual fear: a model relevant for posttraumatic stress disorder. Proc. Natl. Acad. Sci. 105, 5567–5572 (2008)CrossRefGoogle Scholar
  43. 43.
    Gillespie, C.F., Almli, L.M., Smith, A.K., Bradley, B., Kerley, K., Crain, D.F., Mercer, K.B., Weiss, T., Phifer, J., Tang, Y., Cubells, J.F., Binder, E.B., Conneely, K.N., Ressler, K.J.: Sex dependent influence of a functional polymorphism in steroid 5-alpha-reductase type 3 (SRD5A2) on post-traumatic stress symptoms. Am. J. Med. Genet. B Neuropsychiatr. Genet. 162B, 283–292 (2013)CrossRefGoogle Scholar
  44. 44.
    Pinna, G., Rasmusson, A.M.: Ganaxolone improves behavioral deficits in a mouse model of post-taumatic stress disorder. Front. cell. Neurosci. 8, 1–11 (2014)CrossRefGoogle Scholar
  45. 45.
    Sripada, R.K., Marx, C.E., King, A.P., Rampton, J.C., Ho, S., Liberzon, I.: Allopregnanolone elevations following pregnenolone administration are associated with enhanced activation of emotion regulation neurocircuits. Biol. Psychiatry 73, 1045–1053 (2013)CrossRefGoogle Scholar
  46. 46.
    Pinna, G., Rasmusson, A.M.: Upregulation of neurosteroid biosynthesis as a pharmacological strategy to improve behavioral deficits in a putative mouse model of PTSD. J. Neuroendocrinol. 24, 102–116 (2012)CrossRefGoogle Scholar
  47. 47.
    Pinna, G., Agis-Balboa, R., Pibiri, F., Nelson, M., Guidotti, A., Costa, E.: Neurosteroid biosynthesis regulates sexually dimorphic fear and aggressive behavior in mice. Neurochem. Res. 33, 1990–2007 (2008)CrossRefGoogle Scholar
  48. 48.
    Ramsay, J.O., Silverman, B.W.: Functional Data Analysis, 2nd edn. Springer, New York (2005)Google Scholar
  49. 49.
    Irvine, J.M., Regan, J. Spain, T., Caruso, J.D., Rodriguez, M., Luthra, R., Forsberg, J., Crane, N.J., Elster, E.: Analysis of temporal dynamics in imagery during acute limb ischemia and reperfusion. In: SPIE Medical Imaging, Image Processing Section (2014)Google Scholar
  50. 50.
    Izenman, A.J.: Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. Springer, New York (2008)CrossRefGoogle Scholar
  51. 51.
    Cocuzzo, D., Lin, A., Ramadan, S., Mountford, C. Keshava, N.: Algorithms for characterizing brain metabolites in two-dimensional in vivo MR correlation spectroscopy. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4929–4934 (2011)Google Scholar
  52. 52.
    Stanwell, P., Siddall, P., Keshava, N., Cocuzzo, D., Ramadan, S., Lin, A., Herbert, D., Craig, A., Tran, Y., Middleton, J., Gautam, S., Cousins, M., Mountford, C.: Neuro MRS using wavelet decomposition and statistical testing identified biochemical changes in people with SCI and pain. NeuroImage 53, 544–552 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.VA Boston Healthcare System and Boston UniversityBostonUSA
  2. 2.Draper LaboratoryCambridgeUSA

Personalised recommendations