User Location Modeling Based on Heterogeneous Data Sources

  • Patrick Gottschaemmer
  • Tobias Grosse-PuppendahlEmail author
  • Arjan Kuijper
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9189)


Over the past decade, interest in home automation systems constantly grew. This yields especially for daily life - considering the connection of intelligent everyday devices through the Internet of Things. To allow automatic actions on these devices, user localization systems have become a major input modality for smart home systems. The location of a user (or rather a subject) can be determined by different localization techniques, such as sensitive floor systems, discrete activity sensors like light switches or RSSI-based WLAN/Bluetooth beacons (e.g. smartphones). These heterogeneous data sources provide various means of user location certainty, the ability to identify a user or the ability to recognize multiple subjects in the same location. In order to achieve a higher grade of accuracy, multiple data sources can be combined by location fusioning algorithms. However, to allow the integration of such algorithms on a hardware independent basis, a commmon user location model is needed, which can represent all important aspects of these localization techniques. This paper investigates the concepts of existing user localization systems and develops a new model to represent the location of subjects based on already existing location models. An implementation is provided based on Eclipse SmartHome, an open-source building automation framework.


Location modeling User location Location fusion 


  1. 1.
    Braun, A., Heggen, H., Wichert, R.: CapFloor – a flexible capacitive indoor localization system. In: Chessa, S., Knauth, S. (eds.) EvAAL 2011. CCIS, vol. 309, pp. 26–35. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  2. 2.
    Cohn, M.: User Stories Applied: For Agile Software Development. Addison Wesley Longman Publishing Co., Inc, Redwood City, CA (2004) Google Scholar
  3. 3.
    Ficco, M., Russo, S.: A hybrid positioning system for technology-independent location-aware computing. Softw. Pract. Exper 39(13), 1095–1125 (2009). CrossRefGoogle Scholar
  4. 4.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc, Boston, MA (1995) Google Scholar
  5. 5.
    Grosse-Puppendahl, T., Berghoefer, Y., Braun, A., Wimmer, R., Kuijper, A.: Opencapsense: a rapid prototyping toolkit for pervasive interaction using capacitive sensing. In: PerCom 2013, pp. 152–159 (2013)Google Scholar
  6. 6.
    Große-Puppendahl, T.A., Marinc, A., Braun, A.: Classification of user postures with capacitive proximity sensors in AAL-Environments. In: Keyson, D.V., Maher, M.L., Streitz, N., Cheok, A., Augusto, J.C., Wichert, R., Englebienne, G., Aghajan, H., Kröse, B.J.A. (eds.) AmI 2011. LNCS, vol. 7040, pp. 314–323. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Hafiizh, A., Obote, S., Kagoshima, K.: Doa-rssi multiple subcarrier indoor location estimation in mimo-ofdm wlan aps structureGoogle Scholar
  8. 8.
    Jiang, C., Steenkiste, P.: A hybrid location model with a computable location identifier for ubiquitous computing. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, p. 246. Springer, Heidelberg (2002). CrossRefGoogle Scholar
  9. 9.
    Lim, H., Kung, L.C., Hou, J.C., Luo, H.: Zero-configuration indoor localization over ieee 802.11 wireless infrastructure. Wirel. Netw. 16(2), 405–420 (2010). CrossRefGoogle Scholar
  10. 10.
    Liu, J., Priyantha, B., Hart, T., Ramos, H.S., Loureiro, A.A.F., Wang, Q.: Energy efficient gps sensing with cloud offloading. In: Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, SenSys 2012, pp. 85–98. ACM, New York, NY, USA (2012).
  11. 11.
    Marmasse, N.: A user-centered location model. Pers. Ubiquit. Comput. 6(5–6), 318–321 (2002). CrossRefGoogle Scholar
  12. 12.
    Nirjon, S., Liu, J., DeJean, G., Priyantha, B., Jin, Y., Hart, T.: Coin-gps: indoor localization from direct gps receiving. In: Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys 2014, pp. 301–314. ACM, New York, NY, USA (2014).
  13. 13.
    Satoh, I.: Location-aware communications in smart environments. Information Systems Frontiers 11(5), 501–512 (2009). CrossRefMathSciNetGoogle Scholar
  14. 14.
    Shin, D.H., Sung, T.K.: Comparisons of error characteristics between toa and tdoa positioning. IEEE Trans. Aerosp. Electron. Syst. 38(1), 307–311 (2002). CrossRefGoogle Scholar
  15. 15.
    Sousa, M., Techmer, A., Steinhage, A., Lauterbach, C., Lukowicz, P.: Human tracking and identification using a sensitive floor and wearable accelerometers. In: PerCom 2013, vol. 18, p. 22 (2013)Google Scholar
  16. 16.
    Stirbu, V., Selonen, P., Palin, A.: The location graph: towards a symbolic location architecture for the web. In: Proceedings of the 3rd International Workshop on Location and the Web, LocWeb 2010, pp. 10:1–10:8. ACM, New York, NY, USA (2010).
  17. 17.
    Terada, J., Takahashi, H., Sato, Y., Mutoh, S.: A novel location-estimation method using direction-of-arrival estimation. In: 2005 IEEE 62nd Vehicular Technology Conference, VTC-2005-Fall, vol. 1, pp. 424–428, September 2005Google Scholar
  18. 18.
    Valtonen, M., Maentausta, J., Vanhala, J.: Tiletrack: Capacitive human tracking using floor tiles. In: Proceedings of the 2009 IEEE International Conference on Pervasive Computing and Communications, PERCOM 2009, pp. 1–10. IEEE Computer Society, Washington, DC, USA (2009).
  19. 19.
    Vogel, L.: Osgi services - tutorial (2013).

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Patrick Gottschaemmer
    • 1
  • Tobias Grosse-Puppendahl
    • 1
    Email author
  • Arjan Kuijper
    • 1
    • 2
  1. 1.Fraunhofer IGDDarmstadtGermany
  2. 2.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations