Task Specific Paper Controller that Can Be Created by Users for a Specific Computer Operation

  • Daisuke KomoriyaEmail author
  • Buntarou Shizuki
  • Jiro Tanaka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9189)


We describe Paper Controller, a paper based controller that allows users to design and create their own task specific controllers with touch-sensing capability for controlling a desktop computer. Casual users of computers can design and create a task specific Paper Controller by printing and/or drawing buttons freely with conductive ink and by drawing annotations including text and figures with regular ink. We implemented a prototype system for the Paper Controller. The system consists of the Paper Controller, a Clipboard for the Paper Controller, and a parameterization software running on a computer. We conducted an experiment to examine whether users can create a Paper Controller. The results show that the users can create and use their own Paper Controllers.


Paper controller Prototyping Conductive ink Capacitive sensing 


  1. 1.
    Hideki, K., Yoichi, S., Yoshinori, K.: Integrating paper and digital information on EnhancedDesk: a method for realtime finger tracking on an augmented desk system. ACM Trans. Comput.-Hum. Interact. 8(4), 307–322 (2001)CrossRefGoogle Scholar
  2. 2.
    Kaneko, M., Tanaka, J.: Paper control panel: making paper-based touch interface. Proc. Interact. 2014, 562–567 (2014). (In Japanese)Google Scholar
  3. 3.
    Qi, J., Buechley, L.: Electronic popables: exploring paper-based computing through an interactive pop-up book. In: Proceedings of TEI 2010, pp. 121–128 (2010)Google Scholar
  4. 4.
    Lo, J., Paulos, E.: ShrinkyCircuits : sketching, shrinking, and formgiving for electronic circuits. In: Proceedings of UIST 2014, pp. 291–299 (2014)Google Scholar
  5. 5.
    Mellis, D.A., Jacoby, S., Buechley, L., Perner-Wilson, H., Qi, J.: Microcontrollers as material: crafting circuits with paper, conductive ink, electronic components, and an “untoolkit”. In: Proceedings of TEI 2013, pp. 83–90 (2013)Google Scholar
  6. 6.
    Saul, G., Xu, C., Gross, M.D.: Interactive paper devices: end-user design and fabrication. In: Proceedings of TEI 2010, pp. 205–212 (2010)Google Scholar
  7. 7.
    Karagozler, M.E., Poupyrev, I., Fedder, G.K., Suzuki, Y.: Paper generators: harvesting energy from touching, rubbing and sliding. In: Proceedings of UIST 2013, pp. 23–30 (2013)Google Scholar
  8. 8.
    Olberding, S., Wessely, M., Steimle, J.: PrintScreen: fabricating highly customizable thin-film touch-displays. In: Proceedings of UIST 2014, pp. 281–290 (2014)Google Scholar
  9. 9.
    Jacoby, S., Buechley, L.: Drawing the electric: storytelling with conductive ink. In: Proceedings of IDC 2013, pp. 265–268 (2013)Google Scholar
  10. 10.
    Olberding, S., Gong, N.-W., Tiab, J., Paradiso, J.A., Steimle, J.: A cuttable multi-touch sensor. In Proceedings of UIST 2013, pp. 245–254 (2013)Google Scholar
  11. 11.
    Coyette, A., Faulkner, S., Kolp, M., Limbourg, Q., Vanderdonckt, J.: SketchiXML: towards a multi-agent design tool for sketching user interfaces based on USIXML. In: Proceedings of TAMODIA 2004, pp. 75–82 (2004)Google Scholar
  12. 12.
    Segura, V.C.V.B., Barbosa, S.D.J., Simões, F.P.: UISKEI: a sketch-based prototyping tool for defining and evaluating user interface behavior. In: Proceedings of AVI 2012, pp. 18–25 (2012)Google Scholar
  13. 13.
    Villar, N., Gellersen, H.: A malleable control structure for softwired user interfaces. In: Proceedings of TEI 2007, pp. 49–56 (2007)Google Scholar
  14. 14.
    Holman, D., Vertegaal, R.: TactileTape: low-cost touch sensing on curved surfaces. In: Proceedings of UIST 2011 Adjunct, pp. 17–18 (2011)Google Scholar
  15. 15.
    Corsten, C., Avellino, I., Möllers, M., Borchers, J.: Instant user interfaces: repurposing everyday objects as input devices. In: Proceedings of ITS 2013, pp. 71–80 (2013)Google Scholar
  16. 16.
    Hudson, S.E., Mankoff, J.: Rapid construction of functioning physical interfaces from cardboard, thumbtacks, tin foil and masking tape. In: Proceedings of UIST 2006, pp. 289–298 (2006)Google Scholar
  17. 17.
    Greenberg, S., Boyle, M.: Customizable physical interfaces for interacting with conventional applications. In: Proceedings of UIST 2002, pp. 31–40 (2002)Google Scholar
  18. 18.
    Spiessl, W., Villar, N., Gellersen, H., Schmidt, A.: VoodooFlash: authoring across physical and digital form. In: Proceedings of TEI 2007, pp. 97–100 (2007)Google Scholar
  19. 19.
    Klemmer, S.R., Li, J., Lin, J., Landay, J.A.: Papier-Mâché: toolkit support for tangible input. In: Proceedings of CHI 2004, pp. 399–406 (2004)Google Scholar
  20. 20.
    Kawahara, Y., Hodges, S., Cook, B.S., Zhang, C., Abowd, G.D.: Instant inkjet circuits: lab-based inkjet printing to support rapid prototyping of ubicomp devices. In: Proceedings of UbiComp 2013, pp. 363–372 (2013)Google Scholar
  21. 21.
    Arduino Playground - CapacitiveSensor. Last accessed: February 2015
  22. 22.
    Manabe, H., Inamura, H.: Single capacitive touch sensor that detects multi-touch gestures. In: Proceedings of ISWC 2014, pp. 137–138 (2014)Google Scholar
  23. 23.
    Wimmer, R., Baudisch, P.: Modular and deformable touch-sensitive surfaces based on time domain reflectometry. In: Proceedings of UIST 2011, pp. 517–526 (2011)Google Scholar
  24. 24.
    Peiris, R.L., Nakatsu, R.: TempTouch: a novel touch sensor using temperature controllers for surface based textile displays. In: Proceedings of ITS 2013, pp. 105–114 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Daisuke Komoriya
    • 1
    Email author
  • Buntarou Shizuki
    • 1
  • Jiro Tanaka
    • 1
  1. 1.University of TsukubaTsukubaJapan

Personalised recommendations