Advertisement

A Gesture Recognition Method for Proximity-Sensing Surfaces in Smart Environments

  • Biying FuEmail author
  • Tobias Grosse-Puppendahl
  • Arjan Kuijper
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9189)

Abstract

In order to ease the daily activities in life, a growing number of sophisticated embedded systems is integrated into a users environment. People are in need to communicate with the machines embedded in the surroundings via interfaces which should be as natural as possible. A very natural way of interaction can be implemented via gestures. Gestures should be intuitive, easy to interpret and to learn. In this paper, we propose a method for in-the-air gesture recognition within smart environments. The algorithm used to determine the performed gesture is based on dynamic time warping. We apply 12 capacitive proximity sensors as sensing area to collect gestures. The hand positions within a gesture are converted into features which will be matched with dynamic time warping. The gesture carried out above the sensing area are interpreted in realtime. Gestures supported can be used to control various applications like entertainment systems or other home automation systems.

Keywords

Gesture recognition Dynamic time warping Capacitive proximity sensing 

References

  1. 1.
    Braun, A., Hamisu, P.: Using the human body field as a medium for natural interaction. In: Proceedings of the 2Nd International Conference on PErvasive Technologies Related to Assistive Environments, PETRA 2009, pp. 50:1–50:7. ACM, New York (2009). http://doi.acm.org/10.1145/1579114.1579164
  2. 2.
    Braun, A., Hamisu, P.: Designing a multi-purpose capacitive proximity sensing input device. In: PETRA 2011, pp. 151–158 (2011). http://dl.acm.org/citation.cfm?doid=2141622.2141641
  3. 3.
    Cohn, G., Morris, D., Patel, S., Tan, D.: Humantenna: Using the body as an antenna for real-time whole-body interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2012, pp. 1901–1910. ACM, New York (2012). http://doi.acm.org/10.1145/2207676.2208330
  4. 4.
    Grosse-Puppendahl, T., Beck, S., Wilbers, D.: Rainbowfish: Visual feedback on gesture-recognizing surfaces. In: CHI 2014 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2014, pp. 427–430. ACM, New York (2014). http://www.opencapsense.org/fileadmin/opencapsense-org/publications/chi2014.pdf
  5. 5.
    Grosse-Puppendahl, T., Beck, S., Wilbers, D., Zeiß, S., von Wilmsdorff, J., Kuijper, A.: Ambient gesture-recognizing surfaces with visual feedback. In: Streitz, N., Markopoulos, P. (eds.) DAPI 2014. LNCS, vol. 8530, pp. 97–108. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-07788-8_10 CrossRefGoogle Scholar
  6. 6.
    Große-Puppendahl, T.A., Marinc, A., Braun, A.: Classification of user postures with capacitive proximity sensors in AAL-environments. In: Keyson, D.V., Maher, M.L., Streitz, N., Cheok, A., Augusto, J.C., Wichert, R., Englebienne, G., Aghajan, H., Kröse, B.J.A. (eds.) AmI 2011. LNCS, vol. 7040, pp. 314–323. Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-25167-2_43 CrossRefGoogle Scholar
  7. 7.
    Gupta, S., Morris, D., Patel, S., Tan, D.: Soundwave: Using the doppler effect to sense gestures. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2012, pp. 1911–1914. ACM, New York (2012). http://doi.acm.org/10.1145/2207676.2208331
  8. 8.
    Kruskal, J.B., Liberman, M.: The symmetric time-warping problem: from continuous to discrete. In: Sankoff, D., Kruskal, J.B. (eds.) Time Warps, String Edits, and Macromolecules - The Theory and Practice of Sequence Comparison, chap. 4. CSLI Publications, Stanford (1999)Google Scholar
  9. 9.
    Pheatt, C., Wayman, A.: Using the xbox kinect™ sensor for gesture recognition. J. Comput. Sci. Coll. 28(5), 226–227 (2013). http://dl.acm.org/citation.cfm?id=2458569.2458617 Google Scholar
  10. 10.
    Roggen, D., Cuspinera, L.P., Pombo, G., Ali, F., Nguyen-Dinh, L.-V.: Limited-memory warping LCSS for real-time low-power pattern recognition in wireless nodes. In: Abdelzaher, T., Pereira, N., Tovar, E. (eds.) EWSN 2015. LNCS, vol. 8965, pp. 151–167. Springer, Heidelberg (2015) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Biying Fu
    • 1
    Email author
  • Tobias Grosse-Puppendahl
    • 1
  • Arjan Kuijper
    • 1
    • 2
  1. 1.Fraunhofer IGDDarmstadtGermany
  2. 2.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations