Advertisement

Non-local Means for Stereo Image Denoising Using Structural Similarity

  • Monagi H. Alkinani
  • Mahmoud R. El-SakkaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9164)

Abstract

We present a novel stereo image denoising algorithm. Our algorithm takes as an input a pair of noisy images of an object captured form two different directions. We use the structural similarity index as a similarity metric for identifying locations of similar patches in the input images. We adapt the Non-Local Means algorithm for denoising collected patches from the input images. We validate our algorithm on various stereo images at various noise levels. Experimental results show that the denoising performance of our algorithm is better than the original Non-Local Means and Stereo-MSE methods at low noise level \(\left( \sigma \leqslant 20\right) \).

Keywords

Non-local means Patch-based image filtering Stereo imaging Structural similarity index Additive noise reduction  Disparity map 

References

  1. 1.
    Lindenbaum, M., Fischer, M., Bruckstein, A.: On Gabor’s contribution to image enhancement. Pattern Recogn. 27(1), 1–8 (1994)CrossRefGoogle Scholar
  2. 2.
    Yaroslavsky, L.P.: Digital Picture Processing: An Introduction. Springer, Heidelberg (1985). ISBN 3-540-11934-5zbMATHCrossRefGoogle Scholar
  3. 3.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: 1998 IEEE International Conference on Computer Vision, pp. 839–846, Bombay, India (1998)Google Scholar
  4. 4.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. In: 11th Annual international Conference of the Center for Nonlinear Studies on Experimental Mathematics, vol. 60(1–4), pp. 259–268. Elsevier North-Holland Inc., Amsterdam (1992)Google Scholar
  5. 5.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis Mach. Intel. 12, 629–639 (1990)CrossRefGoogle Scholar
  6. 6.
    Buades, A., Coll, B., Morel, J.: A non-local algorithm for image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 60–65 (2005)Google Scholar
  7. 7.
    Deledalle, C., Salmon, J., Dalalyan, A.: Image denoising with patch based PCA: local versus global. In: Hoey, J., McKenna, S., Trucco, E. (eds.) Proceedings of the British Machine Vision Conference, pp. 25.1–25.10. BMVA Press, Durham (2011)Google Scholar
  8. 8.
    Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  9. 9.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bennett, E.P., McMillan, L.: Video enhancement using per-pixel virtual exposures. ACM Trans. Graph. 24(3), 845–852 (2005)CrossRefGoogle Scholar
  11. 11.
    Danielyan, A., Foi, A., Katkovnik, V., Egiazarian, K.: Image and video super-resolution via spatially adaptive blockmatching filtering. In: SPIE Electronic Imaging, 2008, no. 6812–07, San Jose, California, USA (2008)Google Scholar
  12. 12.
    Zhang, L., Vaddadi, S., Jin, H., Nayar, S.K.: Multiple view image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1542–1549 (2009)Google Scholar
  13. 13.
    Heo, Y., Lee, K., Lee, S.: Simultaneous depth reconstruction and restoration of noisy stereo images using non-local pixel distribution. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)Google Scholar
  14. 14.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)CrossRefGoogle Scholar
  15. 15.
    Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 20th International Conference on Pattern Recognition (ICPR), pp. 2366–2369 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversity of Western OntarioLondonCanada

Personalised recommendations