A Simple View-Based Software Architecture for an Autonomous Robot Navigation System

  • Salvador E. Ayala-RaggiEmail author
  • Pedro de Jesús González
  • Susana Sánchez-Urrieta
  • Aldrin Barreto-Flores
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9164)


This paper describes the design and implementation of a basic architecture for view-based autonomous navigation of a mobile robot platform. Our system is composed by an interface module which communicates a robotic platform with a decisions module. The system tries to follow a original trained path by calculating a rotation angle using a scene comparison. We implemented this comparison by performing a matching between the current view of the robot and a memorized panoramic image. The matching process is carried out by two methods: NCC-based template matching and SURF-based marching. Our results demonstrate an acceptable performance of the autonomous navigation for both methods when no changes in the environment are present, and a superior performance of the SURF-based method even in the presence of new objects which were not present during the training stage.

abstract environment.


Robot vision Autonomous navigation Template matching SURF features RANSAC 


  1. 1.
    Matsumoto, Y., Inaba, M., Inoue, H.: Visual navigation using view-sequenced route representation. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, vol. 1, pp. 83–88. IEEE (1996)Google Scholar
  2. 2.
    Gaspar, J., Winters, N., Santos-Victor, J.: Vision-based navigation and environmental representations with an omnidirectional camera. IEEE Trans. Robot. Autom. 16, 890–898 (2000)CrossRefGoogle Scholar
  3. 3.
    Matsumoto, Y., Sakai, K., Inaba, M., Inoue, H.: View-based approach to robot navigation. In: Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2000), vol. 3, pp. 1702–1708. IEEE (2000)Google Scholar
  4. 4.
    Zhang, Y., Cao, J., Lou, L., Su, B.: Appearance-based mobile robot navigation using omnidirectional camera. In: 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 2357–2361. IEEE (2012)Google Scholar
  5. 5.
    Tabuse, M., Nakai, D.: Mobile robot navigation using surf features. ACS 10, 276–279 (2010)Google Scholar
  6. 6.
    Murillo, A.C., Guerrero, J.J., Sagues, C.: Surf features for efficient robot localization with omnidirectional images. In: 2007 IEEE International Conference on Robotics and Automation, pp. 3901–3907. IEEE (2007)Google Scholar
  7. 7.
    Sharma, K., Jeong, K.y., Kim, S.G.: Vision based autonomous vehicle navigation with self-organizing map feature matching technique. In: 2011 11th International Conference on Control, Automation and Systems (ICCAS), pp. 946–949. IEEE (2011)Google Scholar
  8. 8.
    Wang, H., Mou, W., Ly, M.H., Lau, M.W.S., Seet, G., Wang, D.: Mobile robot ego motion estimation using ransac-based ceiling vision. In: 2012 24th Chinese Control and Decision Conference (CCDC), pp. 1939–1943. IEEE (2012)Google Scholar
  9. 9.
    Booij, O., Terwijn, B., Zivkovic, Z., Krose, B.: Navigation using an appearance based topological map. In: 2007 IEEE International Conference on Robotics and Automation, pp. 3927–3932. IEEE (2007)Google Scholar
  10. 10.
    Tabuse, M., Kitaoka, T., Nakai, D.: Outdoor autonomous navigation using surf features. Artif. Life Robot. 16, 356–360 (2011)CrossRefGoogle Scholar
  11. 11.
    Goedeme, T., Tuytelaars, T., Van Gool, L., Vanacker, G., Nuttin, M.: Feature based omnidirectional sparse visual path following. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), pp. 1806–1811 (2005)Google Scholar
  12. 12.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)CrossRefGoogle Scholar
  13. 13.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  14. 14.
    Roland, S., Reza, N.I., Davide, S.: Introduction to autonomous mobile robots. Volume Intelligent robotics and autonomous agents series. MIT Press (2011)Google Scholar
  15. 15.
    Mitchell, T., Labrosse, F.: Visual homing: a purely appearance-based approach. In: University of Essex, pp. 101–108 (2006)Google Scholar
  16. 16.
  17. 17.
  18. 18.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  19. 19.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Salvador E. Ayala-Raggi
    • 1
    Email author
  • Pedro de Jesús González
    • 1
  • Susana Sánchez-Urrieta
    • 1
  • Aldrin Barreto-Flores
    • 1
  1. 1.Facultad de Ciencias de la ElectrónicaBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations