Illumination Robust Facial Feature Detection via Decoupled Illumination and Texture Features

  • Brendan ChwylEmail author
  • Alexander Wong
  • David A. Clausi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9164)


A method for illumination robust facial feature detection on frontal images of the human face is proposed. Illumination robust features are produced from weighted contributions of the texture and illumination components of an image where the illumination is estimated via Bayesian least-squares minimization with the required posterior probability inferred using an adaptive Monte-Carlo sampling approach. This estimate is used to decouple the illumination and texture components, from which Haar-like features are extracted. A weighted aggregate of each component’s features is then compared with a cascade of pre-trained classifiers for the face, eyes, nose, and mouth. Experimental results against the Yale Face Database B suggest higher sensitivity and \(F_1\) score values than current methods while maintaining comparable specificity and accuracy in the presence of non-ideal illumination conditions.


Illumination robust Object detection Image processing 


  1. 1.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intel. 28(12), 2037–2041 (2006)CrossRefGoogle Scholar
  2. 2.
    Bartlett, M.S., Littlewort, G., Fasel, I., Movellan, J.R.: Real time face detection and facial expression recognition: Development and applications to human computer interaction. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2003, vol. 5, pp. 53–53. IEEE (2003)Google Scholar
  3. 3.
    Bradski, G.: Dr. Dobb’s Journal of Software Tools (2000)Google Scholar
  4. 4.
    Cristinacce, D., Cootes, T.F.: Facial feature detection using adaboost with shape constraints. In: BMVC, pp. 1–10. British Machine Vision Association (2003)Google Scholar
  5. 5.
    Elad, M.: Retinex by two bilateral filters. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 217–229. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  6. 6.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Frischholz, R.W., Dieckmann, U.: Biold: a multimodal biometric identification system. Computer 33(2), 64–68 (2000)CrossRefGoogle Scholar
  8. 8.
    Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence 23(6), 643–660 (2001)CrossRefGoogle Scholar
  9. 9.
    Gourier, N., Hall, D., Crowley, J.L.: Facial features detection robust to pose, illumination and identity. In: 2004 IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 617–622. IEEE (2004)Google Scholar
  10. 10.
    Hadid, A., Heikkila, J., Silvén, O., Pietikainen, M.: Face and eye detection for person authentication in mobile phones. In: First ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2007, pp. 101–108. IEEE (2007)Google Scholar
  11. 11.
    Hadid, A., Pietikainen, M., Ahonen, T.: A discriminative feature space for detecting and recognizing faces. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. II–797. IEEE (2004)Google Scholar
  12. 12.
    Hu, W.C., Yang, C.Y., Huang, D.Y., Huang, C.H.: Feature-based face detection against skin-color like backgrounds with varying illumination. J. Inf. Hiding Multimedia Signal Proces. 2(2), 123–132 (2011)Google Scholar
  13. 13.
    Huang, D., Ardabilian, M., Wang, Y., Chen, L.: 3-D face recognition using elbp-based facial description and local feature hybrid matching. IEEE Trans. Inf. Forensics and Secur. 7(5), 1551–1565 (2012)CrossRefGoogle Scholar
  14. 14.
    Jobson, D.J., Rahman, Z.U., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Proces. 6(3), 451–462 (1997)CrossRefGoogle Scholar
  15. 15.
    Lui, D., Modhafar, A., Glaister, J., Wong, A., Haider, M.: Monte Carlo bias field correction in endorectal diffusion imaging. IEEE Trans. Bio-Med. Eng. 61(2), 368–380 (2014)CrossRefGoogle Scholar
  16. 16.
    Morimoto, C.H., Mimica, M.R.: Eye gaze tracking techniques for interactive applications. Comput. Vis. Image Underst. 98(1), 4–24 (2005)CrossRefGoogle Scholar
  17. 17.
    Naruniec, J.: A survey on facial features detection. Int. J. Electr. Telecommun. 56(3), 267–272 (2010)Google Scholar
  18. 18.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recog. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  19. 19.
    Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Sixth international Conference on Computer Vision, pp. 555–562. IEEE (1998)Google Scholar
  20. 20.
    Roy, A., Marcel, S.: Haar local binary pattern feature for fast illumination invariant face detection. In: British Machine Vision Conference 2009. No. LIDIAP-CONF-2009-048 (2009)Google Scholar
  21. 21.
    Shan, C., Gong, S., McOwan, P.W.: Robust facial expression recognition using local binary patterns. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 2, pp. II–370. IEEE (2005)Google Scholar
  22. 22.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I–511. IEEE (2001)Google Scholar
  23. 23.
    Vukadinovic, D., Pantic, M.: Fully automatic facial feature point detection using gabor feature based boosted classifiers. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1692–1698. IEEE (2005)Google Scholar
  24. 24.
    Wilson, P.I., Fernandez, J.: Facial feature detection using haar classifiers. J. Comput. Sci. Coll. 21(4), 127–133 (2006)Google Scholar
  25. 25.
    Wong, A., Clausi, D.A., Fieguth, P.: Adaptive monte carlo retinex method for illumination and reflectance separation and color image enhancement. In: Canadian Conference on Computer and Robot Vision, CRV 2009, pp. 108–115. IEEE (2009)Google Scholar
  26. 26.
    Zhang, H., Gao, W., Chen, X., Zhao, D.: Object detection using spatial histogram features. Image Vis. Comput. 24(4), 327–341 (2006)CrossRefGoogle Scholar
  27. 27.
    Zhang, L., Li, S.Z., Yuan, X., Xiang, S.: Real-time object classification in video surveillance based on appearance learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Brendan Chwyl
    • 1
    Email author
  • Alexander Wong
    • 1
  • David A. Clausi
    • 1
  1. 1.University of WaterlooWaterlooCanada

Personalised recommendations