Advertisement

Mutibiometric System Based on Game Theory

  • Nawaf Aljohani
  • Foysal Ahmad
  • Kaushik RoyEmail author
  • Joseph Shelton
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9164)

Abstract

Biometric systems based on a single biometric trait have drawbacks that are alleviated by multibiometric systems, which combine multiple sources of information. The novelty of this research effort is that Coalition Game Theory (CGT) is applied to improve the performance of the iris and face based multibiometric system. The CGT technique selects the most salient patches obtained using the Local Binary Patterns (LBP) and modified LBP (mLBP) feature extraction techniques. The CGT chooses patches that have better individual importance along with a strong interaction with other patches based on the Shapely value. Results show that CGT model maintains impressive recognition accuracy while using smaller image areas for recognition. More specifically, CGT outperforms the LBP and mLBP techniques.

Keywords

Multibiometric system Coalition game theory Modified local binary pattern Patch selection 

Notes

Acknowledgements

This research was funded by the National Science Foundation (NSF) and Science & Technology Center: Bio/Computational Evolution in Action Consortium (BEACON).

References

  1. 1.
    Wang, Y., Tan, T., Jain, A.: Combining face and iris biometrics for identity verification. In: Proceedings in International Conference on Audio- and Video-based Biometric Person Authentication, pp. 805–813 (2003)Google Scholar
  2. 2.
    Rattani, A., Tistarelli, M.: Robust multi-modal and multi-unit feature level fusion of face and iris biometrics. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 960–969. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Roy, K., Shelton, J., O’Connor, B., Kamel, M.S.: Multibiometric system using fuzzy level set, and genetic and evolutionary feature extraction. IET Biometrics, p. 11 (2015)Google Scholar
  4. 4.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  5. 5.
    Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cohen, S., Dror, G., Ruppin, E.: Feature selection via coalition game theory. Neural Comput. 19(7), 1939–1961 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Ahmad, F., Roy, K., Popplewell, K.: Multispectral iris recognition using patch based game theory. In: Campilho, A., Kamel, M. (eds.) ICIAR 2014, Part II. LNCS, vol. 8815, pp. 112–120. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Ahmad, F., Roy, K., O’Connor, B., Shelton, J., Arias, P., Esterline, A., Dozier, G.: Facial recognition utilizing patch based game theory. Intl. J. Mach. Learn. Comput. 5(4), 334–338 (2015)Google Scholar
  9. 9.
    Phillips, P., Wechslerb, H., Huangb, J., Raussa, P.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16, 295–306 (1997)CrossRefGoogle Scholar
  10. 10.
    CASIA-Iris Version 3 interval dataset. http://www.cbsr.ia.ac.cn/IrisDatabase.htm

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nawaf Aljohani
    • 1
  • Foysal Ahmad
    • 1
  • Kaushik Roy
    • 1
    Email author
  • Joseph Shelton
    • 1
  1. 1.Department of Computer ScienceNorth Carolina A&T State UniversityGreensboroUSA

Personalised recommendations