Advertisement

Classification of Tooth Shapes for Human Identification Purposes–An Experimental Comparison of Selected Simple Shape Descriptors

  • Katarzyna Gościewska
  • Dariusz FrejlichowskiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9164)

Abstract

The application of teeth as biometric features for human identification purposes is widely known thanks to their durability and distinguishability. Nowadays, due to both improved dental care and dental filling materials that are invisible on dental radiographs, the identification should focus on the analysis of tooth shapes, both crown and root, alongside their positions in the mouth. Such an approach requires the automation of digital radiograph processing methods, including: image enhancement, tooth contour extraction, tooth classification and numbering. This paper considers and examines the problem of tooth shape classification using simple shape descriptors and a template matching approach. An attempt is made to establish which simple shape descriptor gives the best classification results.

Keywords

Human identification Teeth classification Dental biometrics Dental radiographs Forensic odontology 

References

  1. 1.
    Marana, A.N., Barboza, E.B., Papa, J.P., Hofer, M., Oliveira, D.T.: Dental Biometrics for Human Identification. In: Midori, A. (ed.) Biometrics – Unique and Diverse Applications in Nature, Science, and Technology, pp. 41–56. InTech (2011)Google Scholar
  2. 2.
    Parvathi, D., Thimmarada, V.B., Vishal, M., Vikas, S.: Automated dental identification system: an aid to forensic odontology. J. Indian Academy Oral Med. Radiol. 23(3), 360–364 (2011)Google Scholar
  3. 3.
    Chen, H., Jain, A.K.: Automatic forensic dental identification. In: Jain, A.K., Flynn, P., Ross, A.A. (eds.) Handbook of Biometrics, pp. 231–251 (2008)Google Scholar
  4. 4.
    Pushparaj, V., Gurunathan, U., Arumugam, B.: An effective dental shape extraction algorithm using contour information and matching by mahalanobis distance. J. Digit. Imaging, 1–10 (2012)Google Scholar
  5. 5.
    Nassar, D., Ammar, H.H.: A neural network system for matching dental radiographs. Pattern Recog. 40(1), 65–79 (2007)zbMATHCrossRefGoogle Scholar
  6. 6.
    Chen, H., Jain, A.K.: Dental biometrics. In: Li, S.Z., Jain, A.K. (eds.) Encyclopedia of Biometrics, pp. 216–223. Springer, US (2009)Google Scholar
  7. 7.
    Frejlichowski, D., Wanat, R.: Application of the Laplacian pyramid decomposition to the enhancement of digital dental radiographic images for the automatic person identification. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010, Part II. LNCS, vol. 6112, pp. 151–160. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  8. 8.
    Frejlichowski, D., Wanat, R.: Extraction of teeth shapes from orthopantomograms for forensic human identification. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part II. LNCS, vol. 6855, pp. 65–72. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. 9.
    Frejlichowski, D., Wanat, R.: Automatic segmentation of digital orthopantomograms for forensic human identification. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011, Part II. LNCS, vol. 6979, pp. 294–302. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Jain, A.K., Chen, H.: Registration of dental atlas to radiographs for human identification. In: Proceedings of SPIE Conference on Biometric Technology for Human Identification II, vol. 5179, pp. 292–298 (2005)Google Scholar
  11. 11.
    James, H. (ed.): Thai tsunami victim identification – overview to date. J. Forensic Sci. 23(1), 1–18 (2005)Google Scholar
  12. 12.
    Trengrove, H.: Operation earthquake 2011: Christchurch earth-quake disaster victim identification. J. Forensic Odonto-Stomatology 29(2), 1–7 (2011)Google Scholar
  13. 13.
    Yuniarti, A., Nugroho, A.S., Amaliah, B., Arifin, A.Z.: Classification and numbering of dental radiographs for an automated human identification system. TELKOMNIKA 10(1), 137–146 (2012)Google Scholar
  14. 14.
    Mahoor, M.H., Abdel-Mottaleb, M.: Classification and numbering of teeth in dental bitewing images. Pattern Recog. 38, 517–586 (2005)CrossRefGoogle Scholar
  15. 15.
    Lin, P.L., Lai, Y.H., Huang, P.W.: An effective classification and numbering system for dental bitewing radiographs using teeth region and contour information. Pattern Recog. 43, 1380–1392 (2010)CrossRefGoogle Scholar
  16. 16.
    Frejlichowski, D.: An analysis of general shape of objects extracted from digital images using simple shape descriptors. Metody Informatyki Stosowanej 4, 23–29 (2009). (in Polish)Google Scholar
  17. 17.
    Yang, M., Kpalma, K., Ronsin, J.: A survey of shape feature extraction techniques. In: Yin, P.Y. (ed.) Pattern Recognition, pp. 43–90 (2008)Google Scholar
  18. 18.
    Rosin, P.L.: Computing global shape measures. In: Chen, C.H., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, 3rd edn., pp. 177–196 (2005)Google Scholar
  19. 19.
    Peura, M., Iivarinen, J.: Efficiency of simple shape descriptors. In: Aspects of Visual Form, pp. 443–451. World Scientific (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Computer Science and Information TechnologyWest Pomeranian University of Technology, SzczecinSzczecinPoland

Personalised recommendations